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ABSTRACT 

The glucocorticoid receptor (GR) is an evolutionally conserved nuclear 

receptor superfamily protein that mediates the diverse actions of 

glucocorticoids as a ligand-dependent transcription factor. This receptor is 

a protein that shuttles from the cytoplasm to the nucleus upon binding to 

its ligand glucocorticoid hormone, where it modulates the transcription 

rates of glucocorticoid-responsive genes positively or negatively. 

Tremendous efforts have been made to reveal the molecular signaling 

actions of the GR, including intracellular shuttling, transcriptional 

regulation and interaction with other intracellular signaling pathways. 

Glucocorticoids are essential for both maintenance of the resting state and 

the stress response, and are pivotal in the treatment of many disorders, 

including autoimmune, inflammatory, allergic, and lymphoproliferative 

diseases. Thus, pathologic or therapeutic implications of the GR, including 

genetic alterations in the human GR gene, disease-associated GR 

regulatory molecules, and development of GR ligands with selective GR 

actions, are of great importance. This chapter provides an overview on 

such GR-related research activities. For complete coverage of all related 

areas of Endocrinology, please visit our on-line FREE web-

text, WWW.ENDOTEXT.ORG. 
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INTRODUCTION 

Glucocorticoids are steroid hormones secreted by the adrenal glands. They 

are important for the maintenance of basal and stress-related homeostasis 

by acting as end products of the stress-responsive hypothalamic-pituitary-

adrenal (HPA) axis (1). Glucocorticoids regulate a variety of biologic 

processes and exert profound influences on many physiologic functions 

(2,3). In pharmacologic doses, glucocorticoids are used as potent 

immunosuppressive agents in the therapeutic management of many 
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inflammatory, autoimmune and lympho-proliferative diseases (4). At the 

cellular level, the actions of glucocorticoids are mediated by an 

intracellular receptor protein, the glucocorticoid receptor (GR) (its gene 

name is “nuclear receptor subfamily 3, group C, member 1: NR3C1”), 

which belongs to the steroid/sterol/thyroid/retinoid/orphan receptor 

superfamily of nuclear transactivating factors with over 200 members in 

general and over 40 in mammals currently cloned and characterized across 

species (5). Human GR consists of 777 amino acid residues (5). GR is 

ubiquitously expressed in almost all human tissues and organs including 

neural stem cells (6). GR functions as a hormone-dependent transcription 

factor that regulates the expression of glucocorticoid-responsive genes, 

which probably represent 3-10% of the human genome and can be 

influenced by the ligand-activated GR directly or indirectly (7). 
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EVOLUTION OF GR 

Nuclear hormone receptors (NRs) form a highly conserved protein family 

observed even in simple metazoans. They are phylogenically differentiated 

into 7 subfamilies under the evolutional selection pressure, and are still 

active in the current human population (8). GR is a member of the steroid 

hormone receptor (SR) subfamily (subfamily 3) of NRs. This receptor 

family of vertebrates consists of six evolutionarily related SRs: two for 

estrogens (estrogen receptor (ER) a and ERβ) and one each for androgens 

(androgen receptor: AR), progestins (progesterone receptor: PR), 

glucocorticoids (GR), and mineralocorticoids (mineralocorticoid receptor: 

MR) (Figure 1). These steroid receptors are also categorized as type I 

receptors, based on their functional characteristics, such as cytoplasmic 

localization in the absence of ligand with association to the heat shock 

proteins, homo-dimerization and recognition of their target DNA sequence 

(see below), while the other NRs belong to type II to IV (5). 
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Figure 1. 

Steroid hormone receptors (SRs: class I receptors) and their homologies 

expressed as percent identity to the protein sequence of human GR. AR; 

androgen receptor, ER: estrogen receptor, ER: estrogen receptor, GR; 

glucocorticoid receptor, MR: mineralocorticoid receptor, PR-A: 

progesterone receptor-A. Modified from (9). 

SRs evolved in the chordate lineage after the separation of deuterostomes 

and protostomes, prior to or at the base of the Cambrian explosion about 

540 million years ago (10,11) (Figure 2A). The receptor phylogeny 

suggests that two serial gene duplications of an ancestral SR gene occurred 

before the divergence of lamprey and jawed vertebrates (Figure 2B). The 

first gene duplication (duplication #1 in Figure 2B) created an estrogen 

receptor (ER) and a 3-ketosteroid receptor, whereas the second duplication 

(duplication #2 in Figure 2B) of the latter gene produced a corticoid 

receptor and a receptor for 3-ketogonadal steroids (androgens, progestins, 

or both). Therefore, the ancestral vertebrates (e.g., lamprey) had three SRs: 

an estrogen receptor (ER), a receptor for corticoids (corticosteroid 

receptor: CR) and a receptor that bound androgens, progestins or both 

(ancestral PR). At some later time within the gnathostome lineage, each of 

these three receptor genes were duplicated again (duplications #3, #4 and 

#5 in Figure 2B) to yield the six SRs currently found in jawed vertebrates: 

the ER creating ERa and ERβ, CR yielding the GR and MR, and the 3-
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ketogonadal steroid receptor (ancestral PR) producing the PR and AR. 

Therefore, the genome of ‘higher’ vertebrates is thought to be the result of 

three genome duplication events that occurred early in chordate evolution 

(10,12). Although the timing of these events is not entirely clear, it is most 

likely that the first 2 duplications occurred before the lamprey-

gnathostome divergence and one after (10,13). 

 

Figure 2. 

Evolution of SRs including GR. A: Appearance of the SR member 

receptors through evolution of the chordate lineage. The first ancestral SR, 

which is close to the current ER, appeared ~540 million years ago. At 

lamprey, 3 receptors, ER, PR and CR, emerged. From the ray-finned 

fishes, all SR members, ER, PR, AR, GR and MR, appeared. Modified 

from (14). B: Phylogeny of the SR family genes. Current human SRs 

including GR were generated through several gene duplications (shown as 

orange squares). Appearance of the ancestral (Anc) SR1, SR2 and CR are 

shown with arrows in the phylogeny tree. Blue lines indicate the lamprey-

gnathostome divergence. Modified from (10). 

The GR and its closest family member MR, both descend from duplication 

of the ancestral CR (AncCR) gene, and emerged in the vertebrate lineage 

approximately 450 million years ago (12,15) (Figure 2B). The GR is 

activated by cortisol, while the MR is activated by aldosterone in tetrapods 

and by deoxycorticosterone (DOC) in teleosts. The MR is also sensitive to 
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cortisol, though considerably less so than to aldosterone and DOC (12,15). 

Like the MR, the AncCR is sensitive to aldosterone, DOC and cortisol, 

indicating that the specificity of GR for cortisol is evolutionarily derived 

(12,15). 

To determine how the preference of the GR for cortisol evolved, 

Ortlund et al. identified substitutions that occurred during the same period 

as the shift in GR function (16). Using maximum likelihood phylogenetics, 

he revealed that GR retained AncCR’s sensitivity to aldosterone, DOC and 

cortisol, from the common ancestor of all jawed vertebrates, but the GR 

from the common ancestor of bony vertebrates obtained a phenotype like 

that of the current GRs that respond only to cortisol. These findings 

indicate that the specificity of GR for cortisol evolved during the interval 

between these two speciation events, approximately 420 to 440 million 

years ago (16). Amino acid substitutions found in the modern GR 

compared to AncGR are not a consequence of the direct introduction of 

corresponding nucleotide changes, but supported by permissive mutations 

that enabled the intermediate receptor to tolerate insertion of the final 

substitutions (17). 

Teleosts, one of the 3 subgroups of ray-finned fishes that covers most of 

the living fishes today, underwent an additional gene duplication event 

about 350 million years ago (18). Thus, all fishes that belong to this 

subclass, including carp and rainbow trout, have 2 GR genes (GR1 and 2 

in rainbow trout). However, zebrafish has only one GR gene in contrast to 

the other teleost families, because this species lost the 2nd GR gene 

sometime during the last 33 million years (18). 
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STRUCTURE OF THE HUMAN GR GENE AND PROTEIN 

All SRs including GR display a modular structure comprised of five to six 

regions (A-F): the amino-terminal A/B region, also called immunogenic or 

N-terminal domain (NTD), and the C and E regions, which correspond to 

the DNA- (DBD) and ligand-binding (LBD) domains, respectively (Figure 

3). D region represents the hinge region (HR), while F region is located in 

the C-terminal end of the NRs with high variability. GR does not have a F 

region. The GR cDNA was isolated by expression cloning in 1985 (19). 

The human GR gene consists of 9 exons and is located in the long arm of 

the chromosome 5 (5q31.3) in an inverse orientation and spanning ~160 

kbs. Alternative splicing of the human GR gene in exon 9 generates two 
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highly homologous receptor isoforms, termed a and b. These are identical 

through amino acid 727, but then diverge, with human GRa having an 

additional 50 amino acids and human GRb having an additional, 

nonhomologous 15 amino acids (20). The molecular weights of these 

receptor isoforms are 97 and 94 kilo-Dalton, respectively. Human GRa is 

expressed virtually in all organs and tissues, resides primarily in the 

cytoplasm, and represents the classic glucocorticoid receptor that functions 

as a ligand-dependent transcription factor. Human GRb, also expressed 

ubiquitously, does not bind glucocorticoid agonists and functions as a 

dominant negative receptor for GRa-induced transcriptional activity (see 

Section 7. THE SPLICE VARIANT GR-beta ISOFORM) (21). 

 

Figure 3. 

Genomic and complementary DNA and protein structures of the human 

(h) GR with its functional distribution, and the isoforms produced through 

alternative splicing. The hGR (NR3C1) gene consists of 10 exons. Exon 1 

is an untranslated region (UTR), exon 2 encodes for NTD (A/B), exon 3 

and 4 for DBD (C), and exons 5-9 for the hinge region (D) and LBD (E). 

GR does not have an F region in contrast to the other steroid hormone 

receptors. The GR (NR3C1) gene contains two terminal exons 9 (exon 9 

and 9) alternatively spliced to produce the classic GR and the nonligand-

binding GR isoform. C-terminal gray-colored domains in GR and GR 

show their specific portions. Locations of several functional domains are 

also indicated. AF-1 and -2: activation function-1 and -2; DBD; DNA-
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binding domain; HD: hinge region; LBD: Ligand-binding domain; NTD: 

N-terminal domain, NL1 and 2: Nuclear translocation signal 1 and 2. 

The N-terminal domain (NTD) of GRa contains a major transactivation 

domain, termed activation function (AF)-1, which is located between 

amino acids 77 and 262 of the human GRa (22,23). AF-1 belongs to a 

group of acidic activators, such as VP16, nuclear factor of kB (NF-kB), 

p65 and p53, contains four a-helices, and plays an important role in the 

communication between the receptor and molecules necessary for the 

initiation of transcription, including coactivators, chromatin modulators 

and basal transcription factors [RNA polymerase II, TATA-binding 

protein (TBP) and a host of TBP-associated proteins (TAFIIs)] (24). GRa 

AF-1 is relatively unfolded at the basal state, while it forms a significantly 

complex helical structure in response to binding to cofactors, such as TBP 

and p160 coactivators (25,26). TBP-induced conformational change in 

AF-1 facilitates association of this domain to a p160 coactivator (27). 

The DNA-binding domain (DBD) of the human GRa corresponds to 

amino acids 420-480 and contains two C4-type zinc finger motifs through 

which GRa binds to specific DNA sequences, the glucocorticoid-

responsive elements (GREs) (28,29). The DBD is the most highly 

conserved domain throughout the NR family. It has two similar zinc finger 

modules, each nucleated by a zinc ion coordination center held by four 

cysteine (C) residues and followed by a-helix (Figure 4A). The N-

terminal’s first a-helix lies in the major groove of the double-stranded 

DNA, while the C-terminal part of the second a-helix is positioned over 

the minor groove (Figure 4B). 
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Figure 4. 

Structure of GR DBD and its interaction with DNA GRE. A: Zinc finger 

structures in DBD of hGR. Numbered eight cysteine (C) residues chelate 

Zn2+ to form two separate finger structures. Red-colored amino acid 

residues form -helical structures. Box with bold line indicates lever arm, 

while that with dashed line shows D-box. Modified from (30). B: 3-

Dimensional model of the physical interaction between the GR DBD and 

DNA GRE. The N-terminal’s first -helix of the GR DBD lies in the major 

groove of the double-stranded DNA, while the C-terminal part of the 

second -helix is positioned over the minor groove. The image was created 

and donated by Dr. D.E. Hurt (National Institute of Allergy and Infectious 

Diseases, NIH, Bethesda, MD). Box with bold line indicates lever arm, 

while that with dashed line shows D-box. Modified from (30). 
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The ligand-binding domain (LBD) of the human GRa corresponds to 

amino acids 481-777, binds to glucocorticoids, and plays a critical role in 

the ligand-induced activation of GRalpha. The crystal structure of the 

GRalpha LBD was successfully analyzed by using a point mutant 

containing a single replacement of phenylalanine at amino acid 602 by 

serine, and is comprised of 12 a-helices and 4 small β-sheets that fold into 

a three-layer helical domain (31) (Figure 5). Helices 1 and 3 form one side 

of a helical sandwich, while helices 7 and 10 form the other side. The 

middle layer of the helices (helices 4, 5, 8, and 9) is present in the top but 

not the bottom half of the protein. This arrangement of helices creates a 

cavity in the bottom half of the LBD, which is surrounded by helices 3, 4, 

11 and 12, and functions as a ligand-binding pocket (31-33). Interaction of 

the LBD with the heat shock protein (hsp) 90 contributes to the 

maintenance of the protein structure that allows LBD to associate with 

ligand. Ligand-binding induces a conformational change in the LBD and 

allows GRa to communicate with several molecules, such as importin a of 

the nuclear import system, components of the transcription initiation 

complexes and other transcription factors that mediate the ligand-

dependent actions of GRa. The LBD also contains one transactivation 

domain, termed AF-2. The activity of AF-2 is ligand-dependent. 
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Figure 5. 

Structure of the GR LBD. The GR consists of 12 -helices and 4 small β-

sheets that fold into a three-layer helical domain. Helices 1 and 3 form one 

side of a helical sandwich, while helices 7 and 10 form the other side. The 

middle layer of helices 4, 5, 8, and 9 are present in the top but not in the 

bottom half of the protein, thus creating a ligand-binding pocket (shown as 

yellow star) in the bottom half of the LBD, surrounded by helices 3, 4, 11 

and 12. The image was created with the MacPyMOL software using 3K22 

of the RCSB Protein Data Bank (PDB) 

(http://www.rcsb.org/pdb/home/home.do). 
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TRANSCRIPTIONAL AND TRANSLATIONAL 
REGULATION OF GR ISOFORMS 

As described above, the human GR gene expresses two mRNAs through 

alternative use of exon 9a and 9b, and produces two splice variants. The 

human GRa mRNA further expresses multiple isoforms by using at least 8 
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alternative translation initiation sites (34) (Figure 6). Since human GRb 

shares a common mRNA domain that contains the same translation 

initiation sites with human GRa (19), the human GRb variant mRNA 

seems also to be translated through the same initiation sites to a similar 

host of b isoforms. They are produced by ribosomal leaky scanning and/or 

ribosomal shunting from their alternative translation initiation sites located 

at amino acids 27 (GRa-B), 86 (GRa-C1), 90 (GRa-C2), 98 (GRa-C3), 316 

(GRa-D1), 331 (GRa-D2) and 336 (GRa-D3), C-terminally from the 

classic translation start site (1: for the GRa-A) (34). Thus, they have 

different lengths of NTDs but the same DBDs and LBDs. Compared to 

GRa-A, GRa-C2 and GRa-C3 isoforms have stronger transcriptional 

activities on a synthetic GRE-driven promoter, while GRa-D1, GRa-D2 

and GRa-D3 demonstrate weaker activities (34). GRa-B and GRa-C1, 

however, possess transcriptional activities similar to that of GRa-A (34). 

Absence of AF-1 in GRa-D isoforms may explain their reduced 

transcriptional activity, while ~100 amino acids (particularly 3 polar 

amino acids) located in the N-terminal portion of AF-1 appear to support 

increased transcriptional activity of GRa-C isoforms (35). All human GRa 

isoforms translocate into the nucleus in response to ligand, while they are 

differentially distributed in the cytoplasm and/or the nucleus in the 

absence of ligand and display distinct transactivation or transrepression 

patterns on global gene expression examined by cDNA microarray 

analyses (34). Such isoform-specific transcriptional activity is in part 

explained by their distinct chromatin modulatory activity, which is evident 

in the different potencies of the translational isoforms to induce apoptosis 

in T-cell Jurkat cells (36). 
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Figure 6. 

GR isoforms produced through alternative splicing or use of different 

translational initiation sites. The human GR (NR3C1) gene contains two 

terminal exons 9 (9alpha and 9beta) alternatively spliced to produce the 

classic GR (GRalpha-A) and GRbeta-A. C-terminal dark yellow-colored 

domains in GRalpha-A and GRbeta-A show their specific portions. Using 

at least 8 different translation initiation sites located in NTD, the human 

GR (NR3C1) gene produces multiple GR isoforms termed A through D 

(A, B, C1-C3 and D1-D3) with distinct transcriptional activities on 

glucocorticoid-responsive genes. Since GRalpha and GRbeta share a 

common mRNA domain that contains the same translation initiation sites, 

the GRbeta variant mRNA appears to be also translated through the same 

initiation sites and to produce 8 isoforms with different lengths of NTD. 

Modified from (20,37). AF-1 and -2: activation function-1 and -2; DBD; 

DNA-binding domain; HD: hinge region; LBD: Ligand-binding domain 

Translational Human GRa isoforms are differentially expressed in various 

cell lines, tissues and at different developmental stages (34). For example, 

GRa-D isoforms are predominant in immature bone marrow-derived 

dendritic cells (DCs), while GRa-A is a main isoform in mature DCs, and 

this characteristic expression explains maturation-specific alteration of 

glucocorticoid sensitivity in these cells (38). GRa-A is highly expressed in 

brains of toddlers to teenagers, whereas peak expression of GRa-D is 

observed in those of neonates (39). Thus, these N-terminal human GRa 
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isoforms may differentially transduce glucocorticoid hormone signals to 

tissues, depending on their selective expression and inherent activities. 

The human GR gene has eleven different promoters with their alternative 

first exons (1A1, 1A2, 1A3, 1B, 1C, 1D, 1E, 1F, 1H, 1I and 1J) (40,41) 

(Figure 7). Therefore, the human GR gene can produce eleven different 

transcripts from different promoters that encode the same GR proteins 

sharing a common exon 2 containing the translating ATG codon. 1A1, 

1A2, 1A3 and 1I are located in the distal promoter region spanning 

~32,000-36,000 bps upstream of the translation start site, while 1B, 1C, 

1D, 1E, 1F, 1H and 1J position in the proximal promoter region located up 

to ~5,000 bps upstream of such a site (40). Through differential use of 

these promoters, expression levels of GR protein isoforms can vary 

considerably among tissues and disease states (40,42). DNA methylation 

of the human GR gene promoter area is one of the mechanisms that 

regulate the activity of specific GR gene promoters. Indeed, childhood 

trauma, which influences development of the borderline personality 

disorder by affecting the stress-responsive HPA axis, contributes to the 

alteration of DNA methylation levels of the human GR gene promoter in 

the brain (43). Elevated DNA methylation in the human GR gene promoter 

is also found in the brain hippocampus of the patients with major 

depression (44). Furthermore, the methylation status of the 

human GR gene promoter in the peripheral blood is highly altered during 

the perinatal period. Interestingly, preterm infants demonstrate 

significantly lower levels of the DNA methylation compared to full-term 

infants, explaining in part relative glucocorticoid insensitivity observed in 

preterm babies (45). 

In addition to selective use/activation-inactivation of the specific GR gene 

promoters, alternative untranslated 1st exon transcripts differentially 

control stability and translational efficiency of their existing GR mRNA, 

and contribute to differential tissue expression of the GR proteins (46). By 

employing many splice/translational GR isoforms expressed from different 

promoters, human GR appears to form at least 256 different combinations 

of homo- and hetero-dimers with varying expression levels and 

transcriptional activities. This marked complexity in the 

transcription/translation of the human GR gene allows cells/tissues to 

respond differentially to the circulating concentrations of glucocorticoids 

depending on the needs of respective tissues (20). 
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Figure 7. 

The human (h) GR (NR3C1) gene has 11 different promoters with specific 

exon 1 sequences. The hGR (NR3C1) gene has 11 different promoters 

harboring specific exon 1 sequences. Alternative exon 1s are shown as 

yellow arrows or arrowheads. The 5’ flanking region of the hGR (NR3C1) 

gene has proximal and distal promoter regions, which respectively span 

from ~-37,000 to ~-32,000 and from ~-5,000 to ~0, upstream of the 

translation initiation site located in the exon 2 (shown as “ATG” and 

arrowhead), and contain exons 1A1, 1A2, 1A3, and 1I, and 1B, 1C, 1D, 

1E, 1F and 1H, respectively. Modified from (40,41). 
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ACTIONS OF GR 

Nucleocytoplasmic Shuttling of GRa 

In the absence of ligand, GRa resides primarily in the cytoplasm of cells as 

part of a large multiprotein complex, which consists of the receptor 

polypeptide, two molecules of hsp90, and several other proteins (28,47-49) 

(Figure 8). Following ligand binding, the receptor dissociates from the 

hsps and translocates into the nucleus. The GRa contains two nuclear 

translocation signals (NL), NL1 and NL2 (Figure 3): NL1 contains a 

classic basic-type nuclear localization signal (NLS) structure that overlaps 

with and extends C-terminally from the DBD of GRa (50). The function of 

NL1 is dependent on importin a, a protein component of the nuclear 

translocation system, which is energy-dependent and facilitates the 

translocation of the activated receptor into the nucleus through the nuclear 

pore. NL2 spans over almost the entire LBD. In the absence of ligand, 

binding of hsps with the LBD of GRa masks/inactivates NL1 and NL2, 

thereby maintaining GRa in the cytoplasm. Inside the nucleus, GRa binds 

to GREs in the promoter regions of target genes. The interaction of GRa 

with GREs is dynamic, with the GRa binding to and dissociating from 
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GREs in the order of seconds, while the GRE-bound receptor helps other 

GRas to bind DNA by increasing chromatin accessibility (the mechanism 

called “assisted loading”), and ultimately up-regulates their steady state 

association on glucocorticoid-responsive gene promoters (51,52). The 

above findings were obtained using the multi-copy GREs artificially 

inserted into the host cell chromatin, but a recent report confirmed them by 

examining endogenous GREs using a single molecule imaging technique 

(53). GRa also modulates transcriptional activity of other transcription 

factors by physically interacting with them. After modulating the 

transcription of its responsive genes, GRa dissociates from the ligand and 

slowly returns to the cytoplasm as a component of the heterocomplexes 

with hsps (54-56). The ubiquitin-proteasomal pathway degrades ligand-

bound GRa in the nucleus, facilitating clearance of the receptor from 

GREs; thus, this system regulates the transcriptional activity of GRalpha in 

a negative fashion (57,58). 

 

Figure 8. 

Intracellular circulation of GR. Circulation of GR between the cytoplasm 

and the nucleus, and its transcriptional regulation on the glucocorticoid-
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responsive genes in the nucleus are shown in the panel. GR translocates 

into mitochondria or lysosomes as well. GREs: glucocorticoid responsive 

elements; TFREs: transcription factor responsive elements; HSPs: heat 

shock proteins; TF: transcription factor. From (59). 

Several mechanisms have been postulated for the regulation of GRa 

nuclear export [27]. The Ca2+-binding protein calreticulin plays a role in 

the nuclear export of GRa, directly binding to the DBD of this receptor 

(60-62). In contrast, the CRM1/exportin and the classic nuclear export 

signal (NES)-mediated nuclear export machinery does not appear to be 

functional directly on GR (50,60,63). Rather, NES-harboring and 

phospho-serine/threonine-binding protein 14-3-3s can bind the human GR 

phosphorylated at serine 134, and segregates the nuclear GRa into the 

cytoplasm (64,65) (see also Section 6. FACTORS THAT MODULATE 

GR ACTIONS, B. Epigenetic Modulation of GRa, Phosphorylation). 

In addition to translocating into the nucleus, GRa was reported to shuttle 

into mitochondria upon ligand activation and to stimulate mitochondrial 

gene expression by binding to their own DNA (66) (Figure 8). Exposure of 

rats to stress or corticosterone induces translocation of GRa to 

mitochondria and modulates mitochondrial mRNA expression (67), 

indicating that this activity of GRa is evident at an animal level. GRa was 

also shown to move into the lysosome, which leads to the negative 

regulation of its transcriptional activity (68). 

Mechanisms of GRa-mediated Activation of Transcription 

Classically, GRa exerts its transcriptional activity on glucocorticoid-

responsive genes by binding to GREs located in the promoter region of 

these genes (69). The optimal tandem GREs is an inverted hexameric 

palindrome separated by 3 base pairs, PuGNACANNNTGTNCPy, on 

which each GRa molecule binds one of the palindromes, forming a 

homodimer on this binding site through multiple contacts between the 2 

receptors (70,71). Recent research indicated that sequence variation of 

GREs, including 3 non-specific spacer nucleotides, influences the 3-

dimensional structure of DBD and modulates the transcriptional activity of 

whole GRa molecule (72,73); Binding of GRa DBD to GRE DNA 

sequence induces conformational changes in the dimerization surface 

located in D-loop through the lever arm, which positions itself between the 

first a-helix and D-loop (Figure 4A). Two receptors bound on each GRE 

half site then communicate with each other with their GRE sequence-

specific dimerization surfaces, and ultimately develop net transcriptional 
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activity. These findings suggest that DNA GRE is a sequence-specific 

allosteric modulator of GRa transcriptional activity through alteration of 

its protein conformation, explaining in part gene-specific transcriptional 

effects of this receptor. 

The GRE-bound GRa stimulates the transcription rates of glucocorticoid-

responsive genes by facilitating formation of the transcription initiation 

complex on the GREs-containing promoter of these genes via its AF-1 and 

AF-2 transactivation domains (74) (Figure 3). Actions of AF-1 located in 

NTD of GRa is ligand-independent, while AF-2 is created on GRa LBD 

upon ligand-binding (75). 

The transcription initiation complex attracted and formed on DNA-bound 

GRa is a mega protein structure that include over 100 proteins with 

different activities, such as RNA polymerase II and its ancillary factors, 

general transcription factors and numerous co-regulatory molecules 

with/without enzymatic activities (74). Research studies aimed to identify 

molecules interacting with GRa AF-2 have led to several proteins and 

protein complexes, called coactivators or cofactors, that form a bridge 

between DNA-bound GRa and the transcription initiation complex, and 

assist enzymatically with the transmission of the glucocorticoid signal to 

RNA synthesis promoted by the RNA polymerase II (76) (Figure 9). These 

include: (1) p300 and the homologous cAMP-responsive element-binding 

protein (CREB)-binding protein (CBP), which also serve as 

macromolecular docking “platforms” for transcription factors from several 

signal transduction cascades, including NRs, CREB, activator protein-1 

(AP-1), NF-kB, p53, Ras-dependent growth factor, and signal transducers 

and stimulators of transcription (STATs) (77). Because of their central 

position in many signal transduction cascades, the p300/CBP coactivators 

are also called co-integrators; (2) p300/CBP-associated factor (p/CAF), 

originally reported as a human homologue of yeast Gcn5, which interacts 

with p300/CBP and is also a broad transcription coactivator (78,79); and 

(3) the p160 family of coactivators, which preferentially interact with SRs 

(80). These include the steroid receptor coactivator-1 (SRC-1), SRC-2, 

which consists of transcription intermediate factor-II (TIF-II) and the 

glucocorticoid receptor-interacting protein-1 (GRIP1), and SRC-3, which 

consists of the p300/CBP/co-integrator-associated protein (p/CIP), 

activator of thyroid receptor (ACTR) and the receptor-associated 

coactivator-3 (RAC3) (76,80,81). These 3 subclasses of p160 family 

coactivators are also called, respectively, as nuclear receptor coactivators 

(NCoA) 1, 2 and 3. 
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Figure 9. 

Schematic model demonstrating the interaction and activity of HAT 

coactivators and other chromatin modulators, which are attracted by GR to 

the promoter region of glucocorticoid-responsive genes. Promoter-

associated GR is cleared by the ubiquitin-proteasomal pathway, which 

regulates turnover of GR on DNA. Modified from (82). AF-1 and -2: 

activation function-1 and -2; CBP: cAMP-responsive element-binding 

protein (CREB)-binding protein; DRIP: vitamin D receptor-interacting 

protein; GREs: glucocorticoid response elements; p/CAF: p300/CBP-

associated factor; SWI/SNF: mating-type switching/sucrose non-

fermenting; TRAP: thyroid hormone receptor-associated protein. 

The p160 coactivators are the first to be attracted to the DNA-bound NRs 

and help accumulating p300/CBP and p/CAF proteins to the promoter 

region, indicating that p160 proteins play a pivotal role in NR-mediated 

transactivation. A study using the cryoelectron microscopy demonstrated 

detailed attraction modes of p160 proteins and p300/CBP to DNA-bound 

and ligand-activated ERa (83); Each of the tandem ER response elements 

(EREs)-bound receptors independently attracts one p160 molecule via the 

transactivation surface of the receptor created by their AF-1 and AF-2. 

Then, the two NCoAs attracted to the receptors recruits one p300/CBP 

molecule to the DNA/receptors/p160s complex through multiple contacts 

mediated by different portions of the p160 proteins. 
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In addition to physical interaction and subsequent formation of the 

transcriptional initiating complex on the DNA-bound receptors by these 

coactivators (that is assembly of transcriptional initiation complex), these 

molecules have intrinsic histone acetyltransferase (HAT) activity through 

which they acetylate specific lysine residues of chromatin-bound histones, 

loosen the tightly assembled chromatin structure and facilitate access of 

other transcription factors and transcriptional complexes to the promoter 

region (76). These HAT coactivators also acetylate specific lysine residues 

of their own molecules, NRs and other transcription factors, and modulate 

their mutual protein-protein interaction and/or association to attracted 

promoters (84-86). The p160 family coactivators and p300/CBP protein 

contain one or more copies of the coactivator signature motif sequence 

LxxLL, where L is leucine and x is any amino acid (80,87). LxxLL forms 

a helical structure, and develops multiple hydrophobic bonds with its 

leucine residues to the AF-2 surface, which is created by helixes 3, 4 and 

12 of the GRa LBD upon binding to ligand glucocorticoid (Figure 10A). 

p160-type coactivators contain 3 LxxLL motifs in its nuclear receptor-

binding box (NRB) located in their central portion (76) (Figure 10B). Each 

of these motifs demonstrates different affinity to various NRs, indicating 

that specific p160 proteins participate in the transcriptional activity of 

particular NRs through preferential use of LxxLL motifs (88). For 

example, GRa preferentially interacts with GRIP1 p160 protein through C-

terminally located 3rd LxxLL motif of this coactivator (89). 
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Figure 10. 

p160 coactivators physically interact with its multiple LxxLL motifs to the 

AF-2 surface of GR. A: 3-dimensional interaction image of GR AF-2 and 

the LXXLL peptide. The GR AF-2 surface has three large pockets into 

which core leucines (L745, L748 and L749) of the LXXLL peptide deeply 

bury themselves. There are additional intermolecular contacts that are 

important for peptide binding, including the electrostatic bonds created 

between (i) R746 (LXXLL peptide) and D590 (receptor), (ii) D750 

(LXXLL peptide) and R585 (receptor) and (iii) D752 (LXXLL peptide) 

and K579 (receptor). From (89). B: p160-type coactivators (NCoAs) have 

3 LxxLL motifs in their NR-binding box (NRB). Linearlized GRIP1 

(NCoA2) molecule with NRB located in the middle portion is shown as a 

representative of the p160-type coactivators (NCoAs). In addition to NRB, 

GRIP1 has the basic helix-loop-helix (bLHL) and the PAS domains in its 

N-terminal portion, and p300/CBP-binding domain and one transactivation 

domain containing the HAT domain in the C-terminus. 

The AF-2 transactivation domain of GRa also attracts several other distinct 

chromatin modulators, such as the mating-type switching/sucrose non-

fermenting (SWI/SNF) complex and components of the vitamin D 
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receptor-interacting protein/thyroid hormone receptor-associated protein 

(DRIP/TRAP) complex (76). The SWI/SNF complex is an ATP-dependent 

chromatin remodeling factor with a multi-subunit structure in which the 

ATPase domain functions as the catalytic center (90). Depending on the 

energy of ATP hydrolysis, the SWI/SNF complex introduces superhelical 

torsion into DNA. One of its components, SNF2 binds to AF-2 of GRa 

directly, functioning as an interface between the GRa and the SWI/SNF 

complex (91). The DRIP/TRAP complex is also a multiprotein 

conglomerate, which consists of over 10 different proteins, including 

DRIP205/TRAP220/PBP and components of SMCC (76). The 

DRIP/TRAP complex may modulate transcription through interaction and 

modification of general transcription factors, such as TFIIH or the C-

terminal tail of the RNA polymerase II. DRIP205/TRAP220 contains two 

LxxLL motifs through which it binds to the ligand-activated AF-2 directly 

(92). Since the DRIP/TRAP complex and p160 coactivators use the same 

motif for interaction with NRs, they may bind to the same site of these 

receptors and sequentially interact with them for full activation of 

transcription. Alternatively, they may interact with a particular set of NRs, 

or have a different effect on different tissues (76,81). 

In contrast to the mechanisms of transactivation by AF-2, those of AF-1 

are not as well elucidated yet. Using the yeast system, the Ada complex 

may act on AF-1-mediated transcriptional activation through direct 

interaction to this module (93). The SWI/SNF complex, TBP and the HAT 

coactivators, such as p160 and p300/CBP, also physically interact with 

AF-1 and mediate its transcriptional activity (94-97). In addition, 

DRIP150, a component of the DRIP/TRAP complex, and the tumor 

susceptibility gene 101 (TSG101) interact with the AF-1 of the GRa in a 

yeast two-hybrid screening (98). The RNA coactivator, steroid RNA 

activator (SRA), also interacts with AF-1 (99). Given that any of these 

molecules and complexes interact with both AF-1 and AF-2, it is likely 

that concurrent activation of AF-1 and AF-2 by their common and/or 

distinct binding partners may be necessary for optimal activation of GRa-

mediated transcriptional activity (100). 

Several coactivators supporting the particular actions of glucocorticoids 

have been identified for GRa. The PPARg coactivator-1a (PGC1a) is a 

~800 amino acid single polypeptide molecule originally identified as a 

cofactor physically interacting with PPARg in the yeast two-hybrid 

screening using a brown adipocyte cDNA library (101). PGC1a has an 

essential role in thermogeneration and energy metabolism by controlling 
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mitochondrial biogenesis (101). It also regulates gluconeogenesis and 

cholesterol metabolism, as well as blood pressure and muscle fiber 

determination through physical interaction with various NRs, 

transcriptional factors and coactivators, such as PPARa, hepatocyte 

nuclear factor 4, CREB, nuclear respiratory factors, and p160 and 

p300/CBP coactivators (101). GRa also interacts physically with PGC1a 

through the latter’s LxxLL motif and this interaction is important for 

stimulation of gluconeogenesis through transcriptional stimulation of the 2 

key genes respectively encoding the glucose-6-phosphatase (G6P) and the 

phosphoenolpyruvate carboxykinase (PEPCK) (101). It is known that 

longevity-associated histone deacetylase Sirt1 regulates PGC1a activity 

through its deacetylase activity-dependent or -independent manner 

(102,103). Sirt1 is shown to interact physically with GRa as well, and 

PGC1a and Sirt1 cooperatively enhance GR-induced transcriptional 

activity of glucocorticoid-responsive genes (104). 

The CREB-regulated transcription coactivator 2 (CRTC2) is a coactivator 

previously known to be specific to CREB, and plays a central role in the 

glucagon-mediated activation of gluconeogenesis in the early phase of 

fasting (105). This coactivator functions also as a coactivator of GRa by 

physically interacting with its LBD outside of AF-2, and is required for 

glucocorticoid-mediated early phase gluconeogenesis by supporting the 

transcriptional activity of GRa on the G6P and PEPCK genes, while 

PGC1a cooperates with GRa for maintaining a late phase of fasting-

induced gluconeogenesis (106). 

Presence of numerous transcriptional cofactors that interact with GRa and 

influence its transcriptional activity indicate that they may have functional 

redundancy and/or activities specific to each of them, regulating particular 

sets of GRa-responsive genes. A study employing knockdown of GRalpha 

cofactors, such as CCAR1, CCAR2, CALCOCO1 or ZNF282, has 

addressed this important issue: it revealed that knockdown of any of these 

cofactor molecules resulted in specific impact on the expression of a 

particular set of glucocorticoid-responsive genes (107), suggesting that 

each cofactor molecule has distinct transcriptional regulatory activity on 

GRa, thus their expression profiles in tissues/organs potentially influence 

the transcriptional activity of GRa in respective tissues. 

Emerging Concept on GRa-mediated Transcriptional 
Repression 
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GRa has long been believed to exert its transcriptional activity by binding 

to the classic GREs, which consists of inverted hexameric palindrome 

separated by 3 base pairs. However, Surjit, et al. identified unique DNA 

sequences also targeted by the GRa DBD, called “negative” GREs 

(nGREs), which play substantial roles in gene transrepression caused by 

GRa (108). The consensus sequence of nGREs is an inverted quadrimeric 

palindrome separated by 0-2 nucleotide pairs (CTCC(N)0–2GGAGA). In 

the structural study employing the prototype nGREs found in the thymic 

stromal lymphoprotein (TSLP) promoter as a model, 2 GRa molecules 

bound each palindrome as a monomer with different affinity in a head-to-

tail fashion, in contrast to GRa-classic GREs where 2 receptors bind DNA 

in a head-to-head fashion (109) (Figure 11). nGREs are ubiquitously 

present in the genes repressed by glucocorticoids throughout several 

animal species, facilitating access of the silencing mediator for retinoid 

and thyroid hormone receptors (SMRT)/nuclear receptor corepressor 

(NCoR)-repressing complexes on the agonist-associated GRa bound on 

these sequences. This is a new concept, indicating that direct binding of 

GRa through its DBD to DNA sequences distinct from those of the classic 

GREs mediates glucocorticoid-induced transcriptional repression. 

However, a genome-wide study revealed that classic GREs and the “new” 

nGREs both contribute to transactivation and transrepression of 

glucocorticoid-responsive genes, suggesting that GRa-targeting DNA 

sequences per se are insufficient to confer direction of transcriptional 

regulation, but epigenetic factors and subsequent chromatin modification 

may play critical roles (110). 
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Figure 11. 

GR binds nGREs as a monomer. GR binds nGREs as a monomer at each 

of its half site (A) in contrast to its binding as a homo-dimer to classic 

GREs (B). nGREs of the mouse TSLP gene is used as an example. Images 

are from the PDB Website (www.rcsb.org). Image data for GR interaction 

with nGREs and classic GREs are DOI: 10.2210/pdb4hn5/pdb and DOI: 

10.2210/pdb3g9m/pdb, respectively. 

Interaction of GRa with Transcription Factors 

Glucocorticoids exert their diverse effects through its single receptor 

protein module, the GRa. In addition to direct regulation of gene 

expression through GRa/DNA interaction, these hormones affect other 

signal transduction cascades through mutual protein-protein interactions 

between specific transcription factors and GRa, influencing the former’s 

ability to stimulate or inhibit the transcription rates of the respective target 

genes. 

The protein-protein interaction of GRa with other transcription factors may 

take place on the promoters that do not contain GREs (tethering 

mechanism), as well as on those having both GRE(s) and responsive 

element(s) of the transcription factors that interact with GRa (“composite 

promoters”) (111) (Figure 12). Repression of the transactivation activity of 

other transcription factors through protein-protein interaction may be 

particularly important in suppression of immune function and 

inflammation by glucocorticoids (112,113). Substantial part of the effects 

of glucocorticoids on the immune system may be explained by the 

interaction between GRa and NF-kB, AP-1 and probably STATs (114-

116). It was also reported that GRa directly interacts with the transcription 

factors “T-box expressed in T-cells” (T-bet) and GATA-3, which play key 

roles respectively in the differentiation of T helper-1 and T helper-2 

lymphocytes (117,118). GRa also influences indirectly the actions of the 

interferon regulatory factor-3 (IRF-3) through the p160 nuclear receptor 

GRIP1, by competing with this factor for binding to the coactivator (119). 

These transcription factors are important for the regulation of immune 

function and the above interactions may explain some GR actions on the 

immune system. The following subsections will discuss GRa-interacting 

transcription factors and their effects on GRa-induced transcriptional 

activity. 
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Figure 12. 

Three different modes of transcriptional regulation of the glucocorticoid-

responsive promoters by GR. GR may interact with other transcription 

factors directly or indirectly. Protein(s) or protein complex(es) may 

intermediate their interaction in the latter case. GREs: glucocorticoid 

responsive elements; TF: transcription factor; TFREs: transcription factor 

responsive elements 

Nuclear Factor-kB (NF-kB) 

NF-kB is one of the most important transcription factors that regulate 

inflammation and immune function. NF-kB is stimulated by many 

inflammatory signals and cytokines (115,120). It is a dimer of various 

members of the NF-kB/Rel family, including p50 (and its precursor p105), 

p52 (and its precursor p100), c-Rel, RelA and RelB in mammalian 

organisms. The heterodimer p65/p50 is a major and the most abundant 

form of NF-kB. In its inactive form, NF-kB creates a trimer with an 

additional regulatory protein, IkB in the cytoplasm. A variety of 

extracellular signals, such as bacterial and viral products (like 

lipopolysaccharide (LPS)) and several proinflammatory cytokines, induces 

phosphorylation of IkB by activating a cascade of kinases. The 

phosphorylated IkB then dissociates from NF-kB and is catabolized, while 

the liberated NF-kB enters into the nucleus where it binds to the kB-

responsive elements in the promoter regions of its responsive genes. 

Ligand-activated GRa directly binds NF-kB p65 at its Rel homology 

domain through its DBD and suppresses the transcriptional activity of NF-

kB, while NF-kB suppresses GRa-induced transactivation through GREs. 

Interaction with GRa inhibits binding of NF-kB to its responsive elements 

or neutralizes its ability to transmit an effective signal (121-124). The 
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LBD of GRa is necessary for this suppressive action (125). GRa also 

suppresses NF-kB-induced transactivation by an additional mechanism, in 

which the GRa tethered to the kB-responsive promoters attracts histone 

deacetylases (HDACs) and/or modulates the phosphorylation of the RNA 

polymerase II C-terminal tail (126,127). In addition, ligand-activated GRa 

increases the synthesis of IkB by stimulating its promoter activity through 

classic GREs, thus segregating active NF-kB from the nucleus by forming 

inactive heterocomplexes with IkB in the cytoplasm (128). A study further 

indicated that attraction of the p160 coactivator GRIP1 together with GRa 

to NF-kB is required for glucocorticoid-induced repression of NF-kB-

mediated cytokine gene expression in mouse primary macrophages (129). 

Activator Protein-1 (AP-1) 

AP-1 is a transcription factor, which regulates diverse gene expression 

involved in cell proliferation and differentiation (114,130,131). It acts as a 

dimer of the bZip protein family members, in which c-Fos and c-Jun 

heterodimers are most abundant. AP-1 transduces biological activities of 

phorbol esters, growth factors and pro-inflammatory cytokines, such as IL-

1 and tumor necrosis factor (TNF) a. These compounds/cytokines 

stimulate different members of the mitogen-activated protein kinase 

(MAPK) family, e.g., p38 MAPK, extracellular signal-regulated kinase 

(ERK) and Jun N-terminal kinase (JNK). Once these kinases are activated, 

they stimulate the synthesis of specific transcription factors involved in the 

induction of fos and jun gene transcription, as well as enhance the 

transcriptional activity of both pre-existing and newly synthesized c-Fos/c-

Jun proteins. AP-1 and GRa mutually interact and repress each other’s 

transcriptional activity on their respective responsive promoters. The LBD 

and DBD of GRa and the leucine zipper domain of c-Jun are necessary for 

this interaction (29). Inhibition of the binding of AP-1 to DNA may be one 

of the underlying mechanisms of GRa-induced suppression of AP-1-

mediated transcriptional activity. Furthermore, GRa competes with AP-1 

for the p300/CBP coactivator, which has a limited reserve, therefore, AP-1 

may not have access to adequate amounts of this coactivator to exert its 

transcriptional activity fully (132). 

cAMP Response Element-binding Protein (CREB) 

CREB functions downstream of many hormones and bioactive molecules, 

which bind to the cell surface-located G-protein-coupled receptors that 

employ cAMP as their second messenger. CREB is also a member of the 
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bZip transcription factors (133). It forms homo- and hetero-dimers with 

other proteins of the same family and binds to the cAMP-responsive 

element (CRE). Stimulation of the above receptors induces the 

accumulation of cAMP that leads to activation of the cAMP-dependent 

protein kinase A (PKA). This kinase then phosphorylates CREB at a 

specific serine residue and promotes recruitment of the transcriptional co-

integrator CBP and its specific coactivator CRTC2 to stimulate the 

transcription of cAMP-responsive genes. GRa and CREB mutually repress 

the transcription from their simple responsive promoters (134,135). 

Although direct association of GRa and CREB has been reported in vitro, 

their physical interaction is still unclear (134,136). CRTC2 might act as a 

bridging factor between CREB and GRa, particularly in their synergistic 

activation of the composite promoters, such as that of G6P, PEPCK and 

the somatostatin gene, which contain both GREs and CRE sequences 

(106,136,137) (see also Section 5. ACTIONS OF GR, B. Mechanisms of 

GRalpha-mediated Activation of Transcription). 

Transforming Growth Factor (TGF) b Downstream Smad6 

Members of the Smad family of proteins transduce signals of transforming 

growth factor (TGF) b superfamily members, such as TGFb, activin and 

bone morphogenetic proteins (BMPs), by associating with the cytoplasmic 

side of the type I cell surface receptors of these hormones (138). Nine 

distinct vertebrate Smad family members have been identified, which are 

classified into three groups: receptor-regulated Smads (R-Smads), such as 

Smad1, 2, 3, 5 and 8, a common-partner Smad (Co-Smad), Smad4, and 

inhibitory Smads (I-Smads) like Smad6 and Smad7 (138). 

Upon binding of TGFb, activin or BMP to their receptors, cytoplasmic R-

Smads are phosphorylated by the receptor kinases, translocate into the 

nucleus and stimulate the transcriptional activity of TFGb-, activin- or 

BMP-responsive genes by binding to their response elements located in 

their promoter region as a hetero-trimer with Co-Smad (138). I-Smads, 

such as Smad6 and Smad7, act as inhibitory molecules in the TGFb family 

signaling, by forming stable associations with activated type I receptors, 

which prevent the phosphorylation of R-Smads (138). Smad6 also 

competes with Smad4 in the heteromeric complex formation induced by 

activated Smad1 (139). In addition, I-Smads directly suppress the 

transcriptional activity of TGFb family signaling by binding to promoter 

DNA and attracting HDACs and/or the C-terminal binding protein (CtBP) 

(140-142). Since I-Smads are produced in response to activation of the 
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TGFb family signaling (143), they literally function in the negative 

feedback regulation of the Smad signaling pathways. Smad6 preferably 

inhibits BMP signaling, while Smad7 is a more general inhibitor, 

repressing TGFb and activin signaling, in addition to that of BMP (144). 

We found that Smad6 physically interacts with the N-terminal domain of 

the GRa through its Mad-homology 2 domain and suppresses GRa-

mediated transcriptional activity in vitro (145). Adenovirus-mediated 

Smad6 overexpression also inhibits glucocorticoid action in rat liver in 

vivo, preventing dexamethasone-induced elevation of blood glucose levels 

and hepatic mRNA expression of PEPCK, a well-known rate-limiting 

enzyme of hepatic gluconeogenesis (145). Smad6 suppresses GRa-induced 

transactivation by attracting HDAC3 to DNA-bound GRa and by 

antagonizing acetylation of the histones H3 and H4 induced by p160 HAT 

coactivators (145). Thus, Smad6 regulates glucocorticoid actions as a 

corepressor of GRa. It appears that the anti-glucocorticoid actions of 

Smad6 may contribute to the neuroprotective, anti-catabolic and pro-

wound healing properties of the TGFb family of proteins through cross-

talk between TGFb family members and glucocorticoids (145). 

C2H2-type Zinc Finger Proteins (ZNFs) 

C2H2-type ZNFs constitute the largest class of putative human 

transcription factors consisting of over 700 member proteins (146,147). In 

addition to C2H2-type zinc fingers (ZFs), these proteins harbor several 

structural modules, such as the Broad-Complex, Tramtrack, and Bric-a-

brac (BTB)/Poxvirus and zinc finger (POZ), Krüppel-associated box 

(KRAB) and SCAN domains (147). These modules are usually located in 

the N-terminal portion, and function as platforms for protein-protein 

interactions, whereas ZFs are positioned in the C-terminal area and 

function mainly as a DNA-binding domain (147). The BTB/POZ and 

KRAB domains have transcriptional regulatory activity (mostly 

repressive), whereas the SCAN domain does not (148). Among human 

C2H2-type ZNFs, about 7% have a BTB/POZ domain (BTB/POZ-ZNFs), 

43% harbor a KRAB domain (KRAB-ZNFs) and 7% contain a SCAN 

domain (SCAN-ZNFs) (146). Sixty-seven % of the human C2H2-type 

ZNFs have only ZFs without any of these domains (thus, they are “poly-

ZNFs”) (146). Some poly-ZNFs, such as members of the specificity 

protein (SP)/Krüppel-like factor (KLF) family transcription factors (e.g., 

SP1, KLF4 and KLF11) cooperate with GRa for regulating the 

transcriptional activity of specific glucocorticoid-responsive genes in 
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distinct biological pathways, such as monoamine oxidase A expression in 

CNS and glucocorticoid-mediated skin barrier formation in prenatal fetus 

(147). Furthermore, GRa stimulates the transcriptional activity of 

the KLF9 gene through the GREs located in the promoter region of this 

gene, and expressed KLF9 plays important roles in glucocorticoid-

mediated survival of the newly differentiated hippocampal granule 

neurons (147). One poly-ZNF called CCCTC-binding factor (CTCF) is an 

architectural protein playing a major role in the formation of chromatin 

looping, which governs enhancer-gene promoter communication, and 

ultimately contributes to the tissue/phase-specific expression of 

glucocorticoid-responsive genes (149). Although direct evidence of its 

interaction to GRa is still missing, CTCF interacts with ERa and the 

thyroid hormone receptors (TRs) and regulates their transcriptional 

activity (150,151), thus it is highly possible that this molecule also plays 

roles in the regulation of GRa transcriptional activity. One KRAB-ZNF, 

the zinc finger protein 764 (ZNF764), which composes of a N-terminally 

located KRAB domain and seven C2H2-type ZF motifs in the C-terminal 

area, was identified as a coactivator of several SRs including GRa, 

possibly cooperating with other NR coactivators (152). Indeed, 

haploinsufficiency of the ZNF764 gene by microdeletion was associated 

with partial tissue insensitivity to glucocorticoids and developmental 

abnormalities of androgen-dependent organs in an affected boy (152). In a 

genome-wide binding study using ChIP-sequencing, ZNF764- and GRa-

binding sites are found in close proximity, indicating that ZNF764 

modulates GRa transcriptional activity by incorporated in the 

transcriptional complex formed on DNA-bound GR (153). 

Forkhead Transcription Factors 

Forkhead transcription factors are characterized by their DNA-binding 

domain called “Forkhead Box”, and consist of over 100 family members 

classified from FOXA to FOXR (154). Among them, FOXO subgroup 

proteins (FOXO1, 3, 4 and 6 in humans) mediate biological actions of the 

insulin/PI3K/Akt signaling pathway through phosphorylation of several 

serine/threonine residues of this subgroup proteins, acting on cell 

proliferation, cell cycle regulation, oxidative stress, DNA repair, energy 

and glucose metabolism (154). Some of forkhead transcription factors 

(e.g., FOXA1) can act as pioneer factors for other transcription factors 

including NRs, by opening DNA-binding sites of the latter molecules on 

the chromatin (see also Section 5. ACTIONS OF GR, E. New Findings on 

Genome-wide Transcriptional Regulation by GRa) (155). FOXA3 acts as a 
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pioneer factor for GRa by facilitating the latter binding to DNA possibly 

through modulation of the chromatin accessibility and is required for 

glucocorticoid-mediated fat accumulation in adipose tissues (156). 

Other Transcription Factors 

Functional interaction of GRa has also been reported with other 

transcription factors, including the chicken ovalbumin promoter-upstream 

transcription factor II (COUP-TFII), HNF-6, NR4A orphan receptors 

(neuron-derived orphan receptor-1 (NOR-1), nuclear receptor-related 1 

(NURR1) and Nur77), liver X receptors (LXRs), farnesoid X receptor 

(FXR), p53, T-bet, GATA-1 and -3, Oct-1 and -2, NF-1 and C/EBPb. 

COUP-TFII is an orphan nuclear receptor, which plays important roles in 

neurogenesis as well as glucose, lipid and xenobiotic metabolism. This NR 

physically interacts with the hinge region of GRa and suppresses GRa-

induced transcriptional activity by attracting the corepressor SMRT (157). 

Mutual protein-protein interaction of GRa and COUP-TFII was necessary 

for glucocorticoid-induced enhancement of the promoter activity and the 

endogenous mRNA expression of the COUP-TFII-responsive PEPCK, 

suggesting that COUP-TFII may participate in some of the metabolic 

effects of glucocorticoids through direct interactions with GRa (157). The 

hepatocyte nuclear factor 6 (HNF6) is a transcription factor that consists of 

2 different DNA binding domains (CUT and homeobox) and plays an 

important role in the hepatic metabolism of glucose. It represses GRa-

induced transactivation by directly binding to GRa DBD (158). Interaction 

of another orphan nuclear receptor Nur77 and GRa is critical for the 

regulation of proopiomelanocortin (POMC) gene expression (159). LXRs 

consist of 2 isoforms LXRa and LXRb, and play a central role in the 

regulation of cholesterol/fatty acid metabolism by binding to their 

metabolites as a ligand, while FXR acts on bile acid metabolism. GRa and 

these NRs modulate each other’s transcriptional activity by 

communicating through direct protein-protein interaction (160-162). p53, a 

transcription factor functioning as a tumor suppressor, physically interacts 

with GRa in the cytoplasm along with an additional protein Hdm2. GRa 

and p53 mutually repress each other’s transcriptional activity by increasing 

their degradation rates (163,164). GRa also interacts with Oct-1 and -2 on 

the mouse mammary tumor virus (MMTV) promoter and the 

gonadotropin-releasing hormone promoter (165-169). The POU domain of 

Oct-1 and the DBD of GRa interact with each other in vitro. NF-1, which 

also stimulates the MMTV promoter, interacts with GRa and cooperatively 

modulates the activity of this promoter (169,170). The transcriptional 
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activity of GATA-1, a transcription factor that plays an essential role in the 

erythroid differentiation is repressed by GRa at the experimental cellular 

levels. NTD of GRa is necessary for the interaction with GATA-1 (171). 

The CAAT/Enhancer-binding Protein (C/EBP) is one of the bZip family 

transcription factors that have diverse effects on proliferation, 

development and differentiation of embryonic cells/fetus, and influence 

functions of the liver, adipose, immune and hematopoietic tissues in adults 

(172). C/EBPb, also known as the nuclear factor IL-6 (NF-IL6), 

synergistically stimulates transcription of GRa on the composite promoter 

that contains both C/EBPb- and GRa-binding sites (173). GRa, on the 

other hand, enhances C/EBPb activity on its simple responsive promoter 

(173,174). Direct in vitro binding of these proteins has been reported. 

Go to: 

GENOME-WIDE TRANSCRIPTIONAL REGULATION BY 
GRa 

Chromatin-based Regulation of GRa Transcriptional Activity 

GRa regulates expression of glucocorticoid-responsive genes by 

influencing their transcriptional activity through direct or indirect 

interaction with their enhancer/promoter regions. In eukaryotic cells, DNA 

is packed into chromatin by associating with numerous nuclear proteins, 

such as histones and chromatin-modifying factors (175,176). Double-

stranded DNA wraps by 1.67 turns around a histone octamer that consists 

of 2 copies of each core histones H2A, H2B, H3 and H4, and forms the 

smallest structural unit called “nucleosome”, which is further compacted 

into a higher order chromatin. Nucleosome-associated histones possess a 

highly flexible N-terminal tail whose chemical modifications, such as 

acetylation and methylation at specific lysine (K) residues, modulate 

accessibility of GRa to its target DNA sequences residing in chromatin. 

Chromatin is further packed into the 3-dimensional structure called 

topologically associated domains (TADs) in which several protein-coding 

gene bodies, promoters and regulatory elements interact with each other 

through formation of chromatin looping, and their modes of interaction 

alter in different cellular circumstances. A poly-ZNF protein CTCF plays a 

central role in the formation of chromatin looping by cooperating with the 

cohesion protein complex and other accessory factors, including the 

transcription factor IIIC (TFIIIC), ZNF143, PR domain zinc finger protein 

5 (PRDM5) and chromodomain helicase DNA-binding protein 8 (CHD8) 
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(147,149) (Figure 13). In addition to CTCF, interaction of transcription 

factors, such as between GRa and NF-kB, influences formation of 

chromatin looping possibly through cooperation with CTCF (177). A 

study using a new technique called Hi-C (high throughput 3C) further 

revealed that even chromosomes are packed into the nucleus with some 

orders shared by many tissues/organs (178,179). 

 

Figure 13. 

Organization of the topologically associated domain (TADs) and 

chromatin looping promoted by CTCF for differential expression of 

glucocorticoid-responsive genes. CTCF organizes 3-dimensional 

chromatin interaction for the formation of TADs and chromatin looping, in 

cooperating with the cohesion protein complex and other component 

proteins. Chromatin loop-forming activity of CTCF is essential for 

differential use of enhancers/promoters by GR-responding genes, and 

underlies organ/tissue-specific actions of glucocorticoids. Modified from 

(147). 

In rat liver, more than 11,000 GR-binding sites (GBSs) are identified 

primarily at intergenic distal and intronic regions, but only ~10% of GBSs 

are located in the promoter area (~2.5 kbs from the transcription start site: 

TSS), consistent with the fact that distantly located enhancer regions can 

communicate with the gene promoter through gene looping (180,181). 

Interestingly, ~80-90% of GRa-accessible sites exists prior to 

glucocorticoid addition/GRa stimulation, while their distribution is highly 
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tissue-specific, indicating that local tissue factor(s) mainly determine(s) 

the sets of genes responsive to glucocorticoids by regulating chromatin 

accessibility (180). Indeed, some transcription factors, such as C/EBPb, 

AP-1 and FoxA1, have their binding sites close to GBSs (thus, composite 

sites) and act as tissue-specific priming factors (or pioneer factors) for the 

access of GRa to GBSs, respectively in murine mammary epithelial cells, 

rat liver and human prostate cancer cells (181-183). These pre-existing 

GBSs are enriched with CpG islands and are generally demethylated, 

further suggesting that DNA methylation also contributes negatively to the 

opening of GBSs (184). However, a study revealed that GRa can act as a 

pioneer factor for several other transcription factors previously reported to 

be pioneer factors for GRa (185). This report indicates that GRa can 

function both as a pioneer and a dependent factor based on the 

composition of the binding sites in the regulatory elements and/or local 

chromatin conditions. 

Influence of Gene Variation (Single Nucleotide Polymorphisms: 
SNPs) to Tissue Glucocorticoid Responsiveness 

Humans demonstrate variation in their responsiveness to glucocorticoids 

(sensitivity to glucocorticoids), which then influences the development of 

numerous disorders, such as hypertension, obesity, diabetes mellitus, 

osteoporosis and ischemic heart diseases, asthma and acute lymphoblastic 

leukemias. However, genetic background(s) that explain(s) such difference 

in glucocorticoid responsiveness among human subjects is(are) not known. 

To access this problem, variation of the single nucleotide polymorphisms 

(SNPs) in over 100 individuals was compared with glucocorticoid-induced 

mRNA expression profiles in subjects’ EBV-transformed lymphocytes and 

their secretion of some cytokines (186). The results revealed that the SNPs 

located close (~100 kbps) to the glucocorticoid-responsive genes were 

associated with variation in glucocorticoid responsiveness of their own 

mRNA expression, while SNPs located in the transcription factors known 

to regulate GRa transcriptional activity did not show statistically 

significant differences. These results suggest that the genetic areas close to 

glucocorticoid-responsive genes, possibly containing enhancer regions 

and/or other gene regulatory sequences, influence primarily the 

responsiveness of mRNA expression of their associated genes to 

glucocorticoids, rather than those found in the protein-coding sequence of 

GRa, its partner molecules or glucocorticoid-responsive genes themselves. 

The above results on the genetic factors determining individual 

glucocorticoid sensitivity are consistent with recent findings obtained in 
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the genome-wide association studies (GWAS) in which ~70% of SNPs 

associated with susceptibility to common disorders and traits (thus 

individual variation) are found in the gene regulatory regions but not in the 

protein-coding sequences (187). 

Tissue/Organ-specific Actions of GRa Revealed by GR Gene 
Knockout/Knockin Studies 

Modifications of gene expression with gene knockout (deletion of existing 

genes) are tremendously helpful for understanding physiologic actions of 

endogenous GRa in glucocorticoid-target tissues. Whole body GR gene 

knockout revealed that GR deficient pups die just after birth due to 

respiratory insufficiency caused by lack of lung surfactant, indicating that 

GR action is essential for survival (188). By using the same mice, GR is 

also shown to be required for gluconeogenesis upon fasting and 

erythropoiesis under stress (such as erythrolysis or hypoxia) (189,190). 

Mice harboring forebrain-specific GR gene knockout developed a 

phenotype mimicking major depressive disorder in humans, including 

hyperactivity and impaired negative regulation of the HPA axis, indicating 

that alteration of GRa actions in the forebrain plays a causative role in the 

disease onset of major depressive disorder (191). Paraventricular nucleus 

(PVN) of the brain hypothalamus is the central component of the HPA 

axis (1), thus GR gene knockout mice in this brain region was developed 

and their HPA axis was evaluated. The results indicated that PVN GR is 

required for negative regulation of the HPA axis at a basal condition and 

under stress (192). GR gene knockout mice specific in the noradrenergic 

neurons, components of the neural circuit mediating the adaptive stress 

response together with the HPA axis, were also created (1,193). These 

mice demonstrated depressive- and anxiety-like behavior upon stress with 

specificity to duration and gender, indicating that GR in the noradrenergic 

neurons plays an important role in stress response and associated 

behavioral changes in addition to its actions in the HPA axis. In mice with 

cardiomyocyte/vascular smooth muscle cell-specific GR gene knockout, 

fetal heart function is impaired and causes generalized edema in 

embryonic day (E) 17.5. Histologically, disorganized myofibrils and 

cardiomyocytes are found in fetal heart, while altered expression of the 

genes involved in contractile function, calcium handling and energy 

metabolism are observed. These results suggest that GRa actions in the 

cardiomyocytes and vascular smooth muscle cells are important for proper 

functioning and maturation of the fetal heart (194). GR gene knockout 

specific in the vascular endothelial cells revealed that GRa in this tissue 
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mediates a tonic effect of glucocorticoids on blood pressure, possibly by 

supporting autocrine or paracrine activity of this tissue for releasing 

vasoactive mediators in response to glucocorticoid treatment (195). GRa in 

this tissue is also required for the protective response against sepsis by 

conferring glucocorticoid-mediated suppression of cytokine and nitric 

oxide production (196). Challenge of vascular endothelial cell-

specific GR knockout mice with LPS also revealed that GRa in this tissue 

is required for survival of animals against this compound by appropriately 

suppressing circulating levels of inflammatory cytokines (TNFa and IL-6) 

and release of the nitric oxide (197), indicating the important actions of the 

vascular endothelial cell-residing GRa for controlling otherwise 

overshooting inflammatory response. T-lymphocyte-specific GR gene 

knockout mice revealed that GRa-mediated immune suppression mainly 

through Th1 lymphocytes is also necessary for survival of the mice 

against Toxoplasma gondii infection (198). Uterine-specific GR knockout 

mice generated with the Cre-recombinase expressed under the PR gene 

promoter revealed that uterine GRa is required to establish the local 

cellular environment necessary for maintaining normal uterine biology and 

fertility (199). The GR gene knockout specific to testicular Sertoli cell 

identified that GRa in these cells is required to maintain normal testicular 

Sertoli/germ cell numbers and circulating gonadotropin levels, as well as 

optimal Leydig cell maturation and steroidogenesis, thus GRa in these 

cells is required for supporting normal male reproduction (200). 

By using a knockin procedure (replacement of wild type genes with their 

mutants), physiologic importance of the specific GRa functions associated 

with introduced mutations was evaluated. For example, knockin of the 

mutant GRa defective in binding to classic GREs (GRdim harboring A458T 

replacement, which is inactive in transactivation of glucocorticoid-

responsive genes harboring GREs, but active in transrepression through 

protein-protein interaction with other transcription factors), revealed that 

transactivational activity of GRa is not essential for survival (112). Indeed, 

mice harboring GRdim demonstrated partially active HPA axis, full activity 

in glucocorticoid-mediated development of adrenal medulla, and defective 

glucocorticoid-mediated thymocyte apoptosis. However, the GRdim mutant 

receptor was subsequently shown to bind GREs of the N-methyltransferase 

(PNMT) gene, which is a rate-limiting enzyme for the production of 

catecholamines in the adrenal medulla, and to activate strongly the 

expression of this gene (201). Thus, the GRdim mutation cannot completely 

abolish transactivational activity of GRa, further suggesting that this 
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activity of GRa may be required for survival. In addition, the effect of this 

mutant receptor on recently identified nGREs is not known, making the 

original conclusion elusive. 

Go to: 

FACTORS THAT MODULATE GR ACTIONS 

New Ligands with Specific Activities 

Glucocorticoids have two major activities on the transcription of 

glucocorticoid-responsive genes, namely transactivation and 

transrepression (202). The former activity is mainly mediated by binding 

of GRa to its DNA responsive sequences in the promoter region of 

glucocorticoid-responsive genes and stimulating the transcription of 

downstream protein-coding sequences. Mechanisms underlying the latter 

activity are more complex, mostly mediated by suppression of other 

transcription factor activities by GRa. At pharmacologic levels, the 

transactivation activity is well correlated with side effects of 

glucocorticoids, such as glucose intolerance and overt diabetes mellitus, 

central obesity, osteoporosis and muscle wasting (202). On the other hand, 

the transrepressive activity of glucocorticoids is associated mostly with 

their beneficial therapeutic effects, such as suppression of the 

inflammation and immune activity, and induction of apoptosis of several 

neoplastic cells/tissues. Thus, significant efforts have been put to produce 

dissociated glucocorticoids with transrepression but no transactivation 

activity (202). 

RU24858, RU40066 and RU24782 were the first steroids reported to have 

such selectivity, having an efficient inhibitory effect on AP-1- and NF-kB-

mediated gene induction with reduced transactivation activity in 

vitro (203). However, they did not have any therapeutic advantage when 

they were used in vivo. Compound Abbott-Ligand (AL)-438, a derivative 

of a synthetic progestin scaffold, binds GRa with similar affinity to that of 

prednisolone and shows the activity equivalent to prednisolone in 

suppressing paw-edema in a rat experimental model (204). AL-438 does 

not increase circulating glucose levels and bone absorption in contrast to 

prednisolone, indicating that this compound is a promising selective 

glucocorticoid. ZK216348, the (+)-enanitomer of the racemic compound 

ZK209614, binds GRa and demonstrates anti-inflammatory activity 

comparable to that of prednisolone under both systemic and topical 

applications with much less unwanted effects on blood glucose and skin 
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atrophy (205). This compound, however, binds PR and AR in addition to 

GRa, and does not show clear selectivity between transactivation and 

transrepression in vitro. C108297 functions as a GRa modulator through 

induction of unique interaction profiles of GRa to some splice variants of 

the p160 coactivator SRC1. This compound potently enhances GR-

mediated memory consolidation, partially suppresses hypothalamic 

expression of the corticotropin-releasing hormone (CRH), and antagonizes 

to GR-mediated inhibition of hippocampal neurogenesis (206). Cortivazol, 

a pyrazolosteroid, induces nuclear translocation of GRa and stimulates 

GRa-induced transcriptional activity (207). Another compound, 

AL082D06 (D06), the tri-aryl methane, specifically binds GRa with a 

nano-molar affinity and acts as an antagonist for GRa but not for other 

SRs, in contrast to RU 486 (208). CORT-108297 acts also as a competitive 

GRa antagonist with high affinity to GRa (Ki 0.9 nM), but almost 1000-

fold lower affinity to other SRs, PR, ER, AR and MR (209,210). 

Two new non-steroidal GRa ligands, GSK47867A and GSK47869A, act 

as potent agonists with prolonged effects (211). These compounds bind the 

ligand-binding pocket of GRa with high affinity and induce both 

transactivational and transrepressional activities at concentrations ~10-50 

times less than those of dexamethasone. Interestingly, GSK47867A and 

GSK47869A induce very slow GRa nuclear translocation and prolonged 

nuclear retention that leads to delayed but prolonged activation of the 

receptor. In computer-based structural simulation, these compounds induce 

unique GRa LBD conformation at its hsp90-binding site, which may 

underlie their extended GRa activation by causing defective interaction to 

hsp90 and altered intracellular circulation of GRa. By employing high 

throughput screening of 3.87 million compounds with the GR fluorescence 

polarization binding assay, heterobiaryl sulfonamide 2 was recently 

identified as a potent non-steroidal GR antagonist (212). Non-steroidal 

compounds mapracorat (also known as BOL-303242 and ZK245186) and 

the plant origin ginsenide Rg1 function as selective agonists with strong 

anti-inflammatory effects and a better side effect profile (213,214). 

Compound A (CpdA), a stable analogue of the hydroxyl phenyl aziridine 

precursor found in the Namibian shrub Salsola 

tuberculatiformis Botschantzev, exerts anti-inflammatory activity by 

down-regulating TNFa-induced pro-inflammatory gene expression through 

inhibition of the negative effects of GRa on NF-kB, but demonstrates 

virtually no stimulatory activity on GRa-induced transactivation (215). 

This compound also suppresses similarly to dexamethasone the 
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transcriptional activity of the T-bet transcription factor, a master regulator 

of Th1-mediated immune response, and reduces production of the Th1 

cytokine interferon g from murine primary T-cells (216). By sparing AP-1-

induced transcriptional activity and subsequent activation of the 

JNK/MAPK signaling pathway, CpdA does not influence epithelial cell 

restitution, an indicator of wound healing, in contrast to regular 

glucocorticoids (217,218). Thus, CpdA appears to be a dissociated 

compound of plant origin retaining the beneficial anti-inflammatory effect 

of glucocorticoids, being in part devoid of some of the known side effects 

of these compounds. CpdA also preserves the anti-cancer effect of 

glucocorticoids in human T-, B- and multiple myeloma cells, and 

cooperates with the anti-leukemic proteasome inhibitor Brtezomib in 

suppressing growth and survival of these cells (219). This compound is 

also beneficial for the treatment of bladder cancer by suppressing cell 

growth by promoting transrepressive actions of GRa and partially by 

acting as an AR antagonist (220). CpdA does not allow GRa to bind single 

GRE (half-site) sites in contrast to glucocorticoids, and this activity of 

CpdA is beneficial for its use in the treatment of triple-negative breast 

cancer, as single GRE-mediated gene regulation by glucocorticoids is 

associated with development of chemotherapy resistance (221). 

Industrial chemicals are known to influence actions of several SRs, and are 

major threats for the life of living organisms including humans by 

interfering with the physiological actions of these receptors (222,223). 

Recent screening of these compounds using MDA-kb2 human breast 

cancer cells identified bisphenol Z and its analog bis[4-(2-

hydroxyethoxy(phenyl)sulfone (BHEPS) as GR agonists, binding to the 

ligand-binding pocket of GRa and by shifting the helix-12 to the 

antagonist conformation in the structural simulation (224). Phthalates, 

ubiquitous environmental pollutants known for their adverse effects on 

health, bind GRa and other ketosteroid receptors, such as AR and PR, with 

high binding potencies comparable to natural ligands, suggesting that they 

may alter transcriptional activities of these receptors (225). Although 

underlying mechanism(s) are still unknown, chronic low doses of ingested 

petroleum can alter tissue expression levels of GRa in house sparrows, and 

modulates the glucocorticoid-signaling system and the HPA axis (226). 

Tolylfluanid, a commonly detected fungicide in Europe can induce 

biological changes that recapitulate many features of the human metabolic 

syndrome in part through modulating the GRa signaling pathway in male 

mice (227). 
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In addition to the above-explained compounds with agonistic or 

antagonistic actions on GRa, expanding numbers of new compounds with 

such activities have been identified, including: 2-aryl-3-

methyloctahydroohenanthrene-2,3,7-trils (228), C118335 (229), 6-(3,5-

dimethylisoxazol-4-yl)-2,2,4,4-tetramethyl-2,3,4,7,8,9-hexahydro-1H-

cyclopenta[h]quinolin-3-one 3d (QCA-1093) (230), several compounds 

containing “diazaindole” moieties (231), heterocyclic GR modulators with 

a 2,2-dimethyl-3-phenyl-N-(thiazol or thiadiazol-2-yl) propanamide core 

(232), LLY-2707 (233), trierpenes (alisol M 23-acetate and alisol A 23-

acetate) (234), GSK866 analogs UAMC-1217 and UAMC-1218 (235), 

AZD9567 (236), 1,3-benzothiazole analogs (237), 20(R, S)-

protopanaxadiol and 20(R, S)-protopanaxatriol (238) and β-Sitosterol 

(239). 

Go to: 

EPIGENETIC MODULATION OF GRa 

Acetylation and CLOCK-mediated Counter Regulation of 
Target Tissue Glucocorticoid Action against Diurnally 
Fluctuating Circulating Glucocorticoids 

All SRs including GRa are acetylated by several acetyltransferases, such 

as p300, p/CAF and Tip60, and have common acetylation sites in a 

consensus amino acid motif, KXKK, located in their hinge region (240-

242). The human GRa is acetylated at lysine 494 and 495 within an 

acetylation motif also located in its hinge region, and was reported to be 

deacetylated by the HDAC2, an effect that is required for suppression of 

NF-kB-induced transcriptional activity by the activated GRa (243) (Figure 

14). This finding indicates that acetylation of the GRa at these lysine 

residues attenuates the repressive effect of GRa on this transcription factor. 

In agreement with these results, we recently found that the Clock 

transcription factor acetylates GRa at the multiple lysine cluster that 

includes lysines 494 and 495, and represses GRa-induced transcription of 

several glucocorticoid-responsive genes (244). Clock, the “circadian 

locomotor output cycle kaput”, and its heterodimer partner “brain-muscle-

arnt-like protein 1” (Bmal1), belong to the basic helix-loop-helix (bHLH)-

PER-ARNT-SIM (PAS) superfamily of transcription factors, and play an 

essential role in the formation of the diurnal oscillation rhythms of the 

circadian CLOCK system (245). The CLOCK system, located in the 

suprachiasmatic nucleus (SCN) of the brain hypothalamus, acts as the 
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“master” oscillator and generator of the body’s circadian rhythm, while the 

peripheral CLOCK system, virtually distributed in all organs and tissues 

including the CNS outside the SCN, acts generally as a “slave” CLOCK 

under the influence of the central SCN CLOCK. The Clock transcription 

factor shares high amino acid and structural similarity with the activator of 

thyroid receptor (ACTR), a member of the p160-type nuclear receptor 

coactivator family with inherent histone acetyltransferase activity, and 

thus, has such an enzymatic function (246). 

 

Figure 14. 

Distribution of the amino acid residues of the human GR susceptible to 

acetylation, phosphorylation, ubiquitination or SUMOylation. Human GR 

has 4 acetylation sites (lysines: K at amino acid position 480, 492, 494 and 

495, shown with “A”), at least 5 phosphorylation sites (serines: S at amino 

acid position 45, 203, 211, 226 and 395, shown with “P”), 1 ubiqitination 

site (Lysine: K at amino acid position 419, shown with “U”) and 3 

SUMOylation sites (Lysines: K at amino acid position 277, 293 and 703, 

shown with “S”). 

Clock physically interacts with GRa LBD through its nuclear receptor-

interacting domain (NRID) in its middle portion, and acetylates human 

GRa at amino acids 480, 492, 494 and 495. Acetylation of GRa attenuates 

binding of the receptor to GREs, and hence, represses GR-induced 

transactivation of the GRE-driven promoters (244) (Figure 15). Since the 

lysine residues acetylated by Clock are located in the C-terminal extension 

(CTE) that follows DBD and plays a role in DNA recognition by SRs 

(247), it is likely that acetylation of these residues reduces binding of GRa 

to GREs by altering the action of CTE. The part of the hinge region 

acetylated by Clock also overlaps with the nuclear localization signal 

(NL)-1 (50,244), thus it is also possible that acetylation of GRa alters 

nuclear translocation of this receptor. It is well known that the central 

master CLOCK located in SCN creates diurnal fluctuation of circulating 

cortisol, therefore peripheral CLOCK-mediated repression of GRa 
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transcriptional activity in glucocorticoid target tissues functions as a local 

counter regulatory mechanism for oscillating circulating cortisol (248). 

 

Figure 15. 

Clock/Bmal1 suppresses GR-induced transcriptional activity through 

acetylation. Clock physically interacts with GR LBD through its nuclear 

receptor-interacting domain and suppresses GR-induced transcriptional 

activity by acetylating with its intrinsic HAT activity a lysine cluster 

located in the hinge region of the GR (A) through which Clock reduces 

affinity of GR to its cognate DNA GREs (B). A: acetylation; Bmal1: 

brain-muscle-arnt-like protein 1; DBD: DNA-binding domain; GREs: 

glucocorticoid response elements; HR: hinge region; K: lysine residue; 

LBD: ligand-binding domain; NTD: N-terminal domain. From (244). 

In addition to the above findings obtained in in vitro cellular systems, we 

examined the acetylation status of human GRa and the expression of 
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Clock-related and glucocorticoid-responsive genes in vivo and ex vivo, 

using peripheral blood mononuclear cells (PBMCs) from healthy adult 

volunteers (249). The levels of acetylated GRa were higher in the morning 

and lower in the evening, mirroring the fluctuations of circulating cortisol 

in reverse phase. All known glucocorticoid-responsive genes tested 

responded as expected to hydrocortisone, however, some of these genes 

did not show the expected diurnal mRNA fluctuations in vivo. Instead, 

their mRNA oscillated in a Clock- and a GRa acetylation-dependent 

fashion in the absence of endogenous glucocorticoid ex vivo, indicating 

that circulating cortisol might prevent circadian GRa acetylation-

dependent effects in some glucocorticoid-responsive genes in vivo. These 

findings indicate that peripheral CLOCK-mediated circadian acetylation of 

GRa functions as a target tissue- and gene-specific counter regulatory 

mechanism to the actions of diurnally fluctuating cortisol, effectively 

decreasing tissue sensitivity to glucocorticoids in the morning and 

increasing it at night (36). Indeed, in another study where we measured 

mRNA expression of ~190 GRa action-regulating and glucocorticoid-

responsive genes in subcutaneous fat biopsies from 25 obese subjects, we 

found that the levels of evening cortisol were much more important than 

those in the morning to regulate mRNA expression of glucocorticoid-

responsive genes in this human tissue (250). It appears that higher 

sensitivity of tissues to circulating glucocorticoids in the evening due to 

reduced GRa acetylation by CLOCK underlies stronger impact of evening 

serum cortisol levels to glucocorticoid-regulated gene expression 

compared to morning levels. 

The circadian CLOCK system and the HPA axis regulate each other’s 

activity through multilevel interactions in order to ultimately coordinate 

homeostasis against the day/night change and various unforeseen random 

internal and external stressors (251,252). For example, one CLOCK 

transcription factor Cry2 interacts with GRa and represses its 

transcriptional activity (253). Furthermore, GRa binds GREs located in the 

promoter region of the Per1, Per2 and other CLOCK components and 

stimulate their expression, an effect that contributes to resetting of the 

circadian rhythms by glucocorticoids (254,255). The peripheral CLOCK 

system residing in the adrenal glands contributes to the creation of 

circadian glucocorticoid secretion from this organ in addition to diurnally 

secreted ACTH from the pituitary gland (256). An important study further 

revealed new local factors, which also regulate circadian production of 

glucocorticoids in the adrenal glands: the intermediate opioid peptides 
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secreted from the adrenal cortex influence in a paracrine fashion the 

amplitude of the serum corticosterone oscillations in mice through the C-

X-C motif chemokine receptor 7 (CXCR7), a b-arrestin-biased G-protein-

coupled receptor expressed on the adrenocortical cells (257). 

Based on the above-indicated multilevel interaction between the CLOCK 

system and the HPA axis, uncoupling of or dysfunction in either system 

alters internal homeostasis and causes pathologic changes virtually in all 

organs and tissues, including those responsible for intermediary 

metabolism and immunity (248,251,252). Disrupted coupling of cortisol 

secretion and target tissue sensitivity to glucocorticoids may account for 

(1) development of central obesity and the metabolic syndrome in 

chronically stressed individuals, whose HPA axis circadian rhythm is 

characterized by blunting of the evening decreases of circulating 

glucocorticoids, as a result of enhanced input of higher centers upon the 

hypothalamic PVN’s secretion of CRH and arginine vasopressin (AVP); 

and (2) increased cardiometabolic risk and increased mortality of night-

shift workers or subjects exposed to frequent jet-lag because of traveling 

across time zones (248,258). In addition, given that tissue sensitivity to 

glucocorticoids is increased in the evening as mentioned above (thus, 

evening cortisol levels have stronger impact to gene expression than those 

in the morning), supplemental administration of high-dose glucocorticoids 

at night for the treatment of adrenal insufficiency or congenital adrenal 

hyperplasia may increase a possibility of glucocorticoid-related side 

effects. Furthermore, administration of glucocorticoids at a specific period 

of the circadian cycle might increase their pharmacological efficacy, while 

at the same time reducing their unwanted side effects, because CLOCK 

differentially regulates transactivational and transrepressive actions of 

glucocorticoids, which are respectively correlated with side-effects and 

beneficial anti-inflammatory activities of these compounds used at 

pharmacological concentrations (258). 

Phosphorylation 

GRa has several phosphorylation sites and all of them are located in the 

NTD (20,259) (Figure 14). Classically, GRa is phosphorylated after 

binding to its ligand and this may determine target promoter specificity, 

cofactor interaction, strength and duration of receptor signaling and 

receptor stability (259,260). There are several kinases that phosphorylate 

GRa in vitro and in vivo (261). Yeast cyclin-dependent kinase p34CDC28 

phosphorylates rat GRa at serines 224 and 232, which are orthologous to 
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serines 203 and 211 of the human GRa, with the resultant phosphorylation 

enhancing rat GRa transcriptional activity in yeast (262). These residues 

are also phosphorylated after binding of the GRa with agonists or 

antagonists and the phosphorylated receptor shows reduced translocation 

into the nucleus and/or altered subcellular localization in mammalian cells 

(259,263). The p38 MAPK phosphorylates serine 211 of the human GRa, 

enhances its transcriptional activity and mediates GRa-dependent 

apoptosis (264). p38 MAPK and JNK also phosphorylate serine 226 of the 

human GRa and suppress its transcriptional activity by enhancing nuclear 

export of the receptor (63). Modulation of the molecular interactions 

between GRa AF-1 and cofactors through phosphorylation of these serine 

resides underlies in part the transcriptional regulation of this receptor by 

these kinases, as these serines are located within the AF-1 domain (265). 

Threonine 171 of the rat GRa is also phosphorylated by p38 MAPK and 

glycogen synthase kinase-3 (GSK3): phosphorylated rat GRa demonstrates 

reduced transcriptional activity in yeast and human cells, however, the 

human GRa does not have a threonine residue equivalent to that of the rat 

GRa (266,267). On the other hand, one GSK3 family protein, GSK3b, 

phosphorylates human GRa at serine 404 and modulates hGRa 

transcriptional activity including its repressive effect on NF-kB (268). 

Several serine/threonine phosphatases, such as the protein phosphatase 2A 

(PP2A) and protein phosphatase 5, dephosphorylate human GRa at serine 

203, 211 and/or 226, possibly through their association with GRa LBD 

(269,270). Stimulation of A549 human respiratory epithelial cells with b2 

adrenergic receptor agonists increases PP2A, which in turn increases 

glucocorticoid sensitivity by dephosphorylating GRa at serine 226 (271). 

However, PP2A also regulates indirectly GRa phosphorylation by 

increasing dephosphorylation of JNK and subsequent activation of this 

kinase, as JNK directly phosphorylates GRa (272). 

The cyclin-dependent kinase 5 (CDK5) physically interacts with the 

human GRa through its activator component p35, phosphorylates GRa at 

multiple serines including those at 203 and 211, and modulates GRa-

induced transcriptional activity by changing accumulation of 

transcriptional cofactors on GRE-bound GRa (273). CDK5 and p35 are 

expressed mainly in neuronal cells and play important roles in embryonic 

brain development. Aberrant activation of CDK5 in CNS also plays a 

significant role in the pathogenesis of neurodegenerative disorders, such as 

Alzheimer’s disease and amyotrophic lateral sclerosis (274). We reported 

that, in addition to GRa, CDK5 phosphorylates MR and strongly 
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suppresses its transcriptional activity (275). In brain regions, such as 

hippocampus and amygdala, which do not express 11b-HSD2, MR 

functions as a physiologic receptor for circulating glucocorticoids, and 

activation/suppression of MR plays an important role in glucocorticoid-

related memory deficits and alterations in mood and cognition (276). 

Indeed, MR mediates enhancement of neuronal excitability, stabilization 

of synaptic transmission, and stimulation of long-term potentiation (LTP) 

in CA1 hippocampal cells, while MR activation is protective to 

hippocampal granular cell neurons. Thus, it is possible that CDK5-

mediated regulation of MR might underlie development of glucocorticoid-

associated pathologic conditions, such as neurodegenerative disorders and 

mood disorders (277,278). We examined changes of the CDK5 activity in 

mice under stress, and found that acute and chronic stressful stimuli 

differentially regulate the kinase activity together with contemporaneous 

alteration of the GRa phosphorylation in a brain region-specific fashion, 

indicating that CDK5 and its regulatory effects on GRa is an integral 

component of the stress response and mood disorders (279). 

We also found that adenosine 5’ monophosphate-activated protein kinase 

(AMPK), a central regulator of energy homeostasis that plays a major role 

in appetite modulation and energy expenditure, indirectly phosphorylates 

human GRa at serine 211 through activation of p38 MAPK (280). Through 

phosphorylation of GRa, AMPK regulates glucocorticoid actions on 

carbohydrate metabolism, modifying transcription of glucocorticoid-

responsive genes in a tissue- and promoter-specific fashion. Indeed, 

activation of AMPK in rats reverses glucocorticoid-induced hepatic 

steatosis and suppresses glucocorticoid-mediated stimulation of glucose 

metabolism. These findings indicate that the AMPK-mediated energy 

control system modulates glucocorticoid action at target tissues, and 

activation of AMPK could be a promising target for developing 

pharmacologic interventions in metabolic disorders in which 

glucocorticoids play major pathogenetic roles. 

The v-akt murine thymoma viral oncogene homolog 1 (AKT1) or protein 

kinase B, another serine-threonine kinase known to regulate cell 

proliferation and survival, and aberrantly activated in various malignancies 

including acute leukemia, also phosphorylates human GRa at serine 134, 

which is located in NTD of this receptor (281). This phosphorylation of 

GRa retains the receptor in the cytoplasm through which activated AKT1 

develops glucocorticoid resistance in acute leukemic cells, a major 

determinant for the prognosis of leukemic patients (281). AKT1 
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cooperates with phospho-serine/threonine-binding proteins 14-3-3s for 

regulating the transcriptional activity of GRa with 2 distinct mechanisms, 

one through segregation of GRa in the cytoplasm upon phosphorylation of 

serine 134 by AKT1 and subsequent association of 14-3-3 to GRa, and the 

other through direct modulation of GRa transcriptional activity in the 

nucleus (65). For the latter, AKT1 and 14-3-3 are attracted to DNA-bound 

GRa, accompanied by AKT1-dependent p300 phosphorylation, histone 3 

(H3) serine (S) 10 (H3S10) phosphorylation and H3K14 acetylation at the 

DNA site in which 14-3-3 acts as a molecular scaffold (65). The above 

findings suggest that specific inhibition of the AKT1/14-3-3 activity on the 

cytoplasmic retention of GR but sparing the activity inside the nucleus 

may be a promising target for the treatment of glucocorticoid resistance 

observed in acute leukemia. Furthermore, they may also provide an 

explanation to somewhat conflicting findings previously reported for the 

actions of 14-3-3s on GRa (64,268,281,282). 

Ubiquitination 

The ubiquitin/proteasome pathway plays important roles in transcriptional 

regulation promoted by numerous trans-acting molecules. NRs, including 

GRa, ERs, PR, TRs, RARs and PPARs, as well as other transcription 

factors, such as p53, cJun, cMyc and E2F-1, are ubiquitinated and 

subsequently degraded by the proteasome (57,283). The transcriptional 

intermediate molecules, such as NR coactivators, chromatin remodeling 

factors, and some chromatin components, such as histone H1 and high 

mobility group (HMG) proteins, are also ubiquitinated and lysed by the 

proteasome (57,283,284). Moreover, the proteasome interacts with the C-

terminal tail of the RNA polymerase II and is directly associated with the 

promoter regions of several genes, influencing their transcriptional 

activities (285). Thus, ubiquitination and subsequent processing of these 

molecules by the proteasome appear to regulate the transcriptional activity 

of GRa, possibly by facilitating rapid turnover of promoter-attracted and -

associated GRa, ultimately down-regulating the transcriptional activity of 

this receptor. Indeed, mouse GRa contains a PEST motif at amino acids 

407-426 (399-419 in human GRa) through which the ubiquitin-

conjugating enzyme E2 and the ubiquitin-ligase enzyme E3 recognize their 

substrates (286). The lysine residue of the mouse GRa located at amino 

acid 426 (419 in human GRa) appears to be ubiquitinated, as inhibition of 

ubiquitination by compound MG-132 enhances the transcriptional activity 

of wild type GRa, while the mutant receptor with lysine to alanine 

replacement at amino acid 426 demonstrates elevated transcriptional 
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activity and is insensitive to MG-132 (286) (Figure 14). Ubiquitination of 

GRa also influences motility of the receptor inside the nucleus, which was 

evaluated with the fluorescence recovery after photobleaching (FRAP) 

technique, possibly by changing association of the receptor to the nuclear 

matrix through ubiquitination (58,287,288). 

SUMOylation 

GRa is also SUMOylated. SUMOylation is the reaction conjugating the 

small ubiquitin-related modifier (SUMO) peptide (~100 amino acid 

peptide with molecular mass of ~11 kDa) to substrate proteins and 

conducted by an enzymatic cascade similar to those of ubiquitination but 

specific to SUMOylation (289). The human GRa has three SUMOylation 

sites, at lysines 277, 293 and 703 (290) (Figure 14). The first 2 sites are 

located in the NTD and act as major SUMOylation sites, while the last site 

is positioned in the LBD. SUMOylation of the former 2 sites (K277 and 

K293) suppresses GRa-induced transcriptional activity of a promoter 

containing multiple GREs, possibly by influencing the synergistic effect of 

multiple GRs bound on this promoter (291-293). In contrast, 

SUMOylation of the 3rd site (K703) enhances GRa-induced transcriptional 

activity, which is further enhanced by RSUME (RWD-containing 

SUMOylation enhancer) by changing attraction of the GRIP1 coactivator 

(294). 

The death domain-associated protein (DAXX), a protein mediating the 

Fas-induced apoptosis through interacting with the death domain of Fas, 

was postulated to mediate SUMOylation-induced repression of GRa 

transcriptional activity (295). Other molecules, such as HDACs and the 

protein inhibitors of activated STAT (PIAS) family, which interact with 

SUMOylated proteins including GRa (296,297), might also participate in 

SUMO-mediated repression of GRa transcriptional activity, as the DAXX 

effect appears to be cell type- and/or cellular context-specific (298). 

SUMOylation of GRa is necessary for GRa-induced transrepression 

through the nGREs (an inverted quadrimeric palindrome separated by 0-2 

nucleotide, see Section ACTIONS OF GR, Emerging Concept on GRa-

mediated Transcriptional Repression) by facilitating the formation of a 

complex consisting of SUMOylated GRa, SMRT/NCoR1 and HDAC3 

(299). It is known that phosphorylation of rat GR at amino acid position 

246 (226 in the human GRa) by JNK facilitates SUMOylation of the 

receptor and regulates GRa-induced transcriptional activity in a target 

gene-specific fashion (291). 
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11b-Hydroxysteroid Dehydrogenases (11b-HSDs) 

There are 2 types of 11b-hydroxysteroid dehydrogenases (11b-HSDs), 

type 1 and 2 (11b-HSD1 and 2). 11b-HSD1 catalyzes the conversion of the 

inactive cortisone to active cortisol, thus increases intracellular cortisol 

levels potentially contributing to tissue hypersensitivity to glucocorticoids. 

11b-HSD1 is widely expressed, particularly in the liver, but also in the 

lung, adipose tissue, blood vessels, ovary and CNS (300). The transgenic 

mice over-expressing 11b-HSD1 in adipose tissues develop insulin-

resistant diabetes mellitus, significant accumulation of visceral fat and 

hyperlipidemia, and increased systemic blood pressure, indicating that this 

enzyme may play a role in the development of visceral obesity-related 

metabolic syndrome by increasing availability of local cortisol in adipose 

tissues (301,302). 11b-HSD2, on the other hand, catalyzes the conversion 

of active cortisol into inactive cortisone, and is expressed in the classic 

mineralocorticoid-responsive tissues, such as kidney, colon and sweat 

glands (300). This enzyme enables these tissues to respond to the 

circulating mineralocorticoid aldosterone, protecting MR from binding to 

the excess amounts of circulating cortisol (300). 

Chaperones and Co-chaperones 

GRa forms a heterocomplex with several heat shock proteins (hsps), 

including hsp90, hsp70, hsp40 and hsp23 (69). These proteins bind many 

proteins and help their correct assembly and folding, therefore they are 

called as chaperones. In addition to hsps, there is an additional protein 

group called co-chaperones, such as Hop (hsp70-hsp90 organizing 

protein), SGTA (small glutamine-rich tetratricopeptide repeat-containing 

protein a), FKBP51 (FK506-binding protein 51) and FKBP52, which 

support folding function of hsps by forming a protein complex with the 

latter molecules (69). Hsps modulate the transcriptional activity of GRa by 

influencing maintenance, activation and intracellular circulation of this 

receptor (303). Specifically, hsp90, hsp70 and hsp40 organize proper 

folding of the GRa protein, and are required for the maintenance of its 

high affinity state against ligand where interaction of hsp90 to Hop as well 

as that between hsp70 and SGTA are required (304,305). Upon binding of 

the GRa to glucocorticoids, hsp90 helps the receptor to translocate close to 

the nuclear pore in the side of the cytoplasm by facilitating GRa’s 

association to microtubules through FKBP52. After GRa goes through the 

nuclear pore complex and enters into the nucleus, hsp90 regulates GRa-

induced transactivation negatively, possibly by reducing the association of 
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GRa to DNA GREs (306). However, there are conflicting reports 

indicating that hsp90 stabilizes the association of ligand-bound GRa to 

DNA and helps GRa stimulating the transcriptional activity of 

glucocorticoid-responsive genes (307). These chaperones also protect GRa 

from the degradation mediated by the ubiquitin-proteosomal pathway in 

the nucleus (308). Receptor-associating protein 46 (RAP46), another co-

chaperone associated with several hsps, synergizes with hsp70 to regulate 

GRa transactivation negatively (309). Impact of co-chaperones on in 

vivo actions of GRa was evaluated in humans and mice. FKBP51 is a co-

chaperon known as a negative regulator of GRa activity by reducing the 

latter’s affinity to glucocorticoids, and nucleotide variations in its 

encoding gene FKBP5 are associated with development of mood disorders 

and anxiety in humans possibly by skewing the GRa-signaling system 

(310,311). FKBP51 knockout mice demonstrate reduced basal activity of 

the HPA axis, a blunted response to acute stress and an enhanced recovery 

from this challenge (312). 

Chemical Compounds 

There are several chemical compounds that modulate GRa activity. 

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a wide-spread 

environmental contaminant that produces adverse biologic effects, such as 

carcinogenesis, reproductive toxicity, immune dysfunction, hepatotoxicity 

and teratogenesis, suppresses GRa-induced transactivation possibly by 

reducing the ligand-binding affinity of GRa (313-315). Geldanamycin, a 

benzoquinone ansamycin, which specifically binds hsp90 and disrupts its 

function, suppresses GRa-induced transactivation by inhibiting the 

translocation of GRa into the nucleus (308,316). GRa is also regulated by 

the cellular redox state. Thioredoxin, a compound accumulated during 

oxidative stress, enhances GRa transactivation, most likely due to 

functional replenishment of GRa (317). Ursodeoxycholic acid (UDCA), 

one of the hydrophilic bile acids, which acts as a bile secretagogue, 

cytoprotective agent and immunomodulator, and is used for the treatment 

of various liver diseases including primary biliary cirrhosis, induces 

translocation of GRa into the nucleus and causes GRa-mediated inhibition 

of NF-kB transactivation (318). Mizoribine (4-carbamyl-1-b-D-

ribofurano-sylimidazolium-5-olate), an imidazole nucleotide with 

immunosuppressive activity binds to 14-3-3 and enhances 14-3-3/GRa 

interaction, which may further potentiate 14-3-3’s effect on GRa 

transactivation (319). For more details of the GRa/14-3-3 interaction, 
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please see Section FACTORS THAT MODULATE GR ACTIONS, 

Epigenetic Modulation of GRa, b Phosphorylation. 

Go to: 

NON-CODING RNAS 

Human genome expresses numerous non-protein-coding RNAs in addition 

to protein-coding mRNAs. Indeed, over half of the genome sequence 

expresses RNAs in both directions either as single- or double-stranded 

RNAs (320,321). Classic examples of the former RNAs are ribosomal 

RNAs and transfer RNAs, while several distinct new members have been 

identified recently (322). Depending on their size, non-coding (nc) RNAs 

are empirically categorized as short (~200 bs) or long (>200 bs) ncRNAs. 

The former family includes micro (mi) RNAs, small interfering (si) RNAs, 

small nucleolar (sno) RNAs, piwi (pi) RNAs and transcription start site 

(TSS)-associated RNAs, while the latter consists of long intergenic (linc) 

RNAs, enhancer-associated (e) RNAs, exon-encoding long ncRNAs, 

circular (c) RNAs, promoter-associated RNAs and others. ncRNAs are 

also produced from protein-encoding mRNAs through nuclease digestion, 

such as 3’ UTR RNAs (323). Recently, some of these distinct classes of 

ncRNAs have been revealed to regulate mRNA/protein degradation and 

transcriptional activity of GRa and other NRs. In this subsection, new 

findings on miRNAs and long ncRNAs will be discussed. 

Micro (mi) RNAs 

miRNAs are single-stranded, ~22 b-long RNAs transcribed mainly by the 

RNA polymerase II either from their own genes or from the intronic 

sequence of the protein-coding/non-coding genes (324). Transcribed 

precursor miRNAs are processed by multiple reactions including digestion 

by the RNase III enzyme Dicer, and are liberated as mature forms into the 

cytoplasm. miRNAs are incorporated as binding modules for target 

mRNAs into the RNA-induced silencing complex (RISC), a multi-protein 

machinery containing Dicer, Argonaut (AGO), human immunodeficiency 

virus (HIV)-transactivating response RNA (TAR)-binding protein (TRBP) 

and the protein activator of the interferon-induced protein kinase (PACT). 

Binding of the RICS complex mainly to 3’UTR of the target mRNAs 

through the complemental 6-8 nucleotides of miRNAs leads to degradation 

of associated mRNAs or to inhibition of their translation to proteins. In 

addition to functioning inside the produced cells, miRNAs are secreted 

into extracellular space/circulation as components of the exosome, and act 
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as “hormones” by influencing the functions of distant organs and tissues 

(325). This unique action of miRNA was confirmed in vivo using 

adipocyte-specific Dicer knockout mice supplemented with exosomes 

obtained from normal animals (326). Human genome contains over 1,000 

miRNAs and some of them are known to regulate expression of the GRa 

protein, while glucocorticoids/GRa regulate expression of other miRNAs. 

In a study exploring the miRNAs that mediate ACTH-dependent 

downregulation of GRa in mouse adrenal glands, 4 miRNAs, miR-96, -

101a, -142-3p and -433 induced by ACTH injection, suppress GRa protein 

expression by ~40% (327). miR-142-3p reduces GRa expression by 

directly interacting with its 3’UTR region, and attenuates responsiveness 

to glucocorticoids in T-cell leukemia cells (328). miR-124a, -18, -18a and 

-124 also attenuate GRa protein expression and regulate GRa-induced 

transcriptional activity in various cells and tissues (329-331). miR-29a 

mitigates glucocorticoid-induced bone loss in part by reducing GRa 

expression (332). Glucocorticoids, on the other hand, modulate expression 

of some miRNAs, such as miR-449a, -98, and miR-155, which in turn 

mediate hormonal effects of these steroids (333,334). Systematic screening 

of glucocorticoid-responsive miRNAs in rat primary thymocytes identified 

over 200 miRNAs responsive to this hormone, and some validated 

miRNAs regulate cell death pathway (335). In myeloma cells, 

glucocorticoids induce miR-150-5p, which changes expression of the 

genes involved in cell death and cell proliferation pathways, thus this 

miRNA mediates in some part the therapeutic effects of glucocorticoids on 

multiple myeloma (336). miR-119a-5p is also glucocorticoid-responsive 

miRNA that mediates anti-proliferative effects of glucocorticoids on 

osteoblasts by affecting the WNT signaling pathway (337). 

Long Non-coding (lnc) RNAs 

Several lncRNAs regulate the transcriptional activity of GRa and/or other 

SRs. The steroid RNA coactivator (SRA) is a prototype lncRNA that 

regulates the transcriptional activity of several SRs (99). SRA was 

originally cloned in the yeast two-hybrid assay by using NTD of the PR as 

bait. It enhances ligand-induced transcriptional activity of AR, ER, GRa 

and PR. It is found in the complex containing the p160 coactivator SRC1, 

and regulates transcriptional activity in part by associating with the SRA 

stem-loop-interacting RNA binding-protein (SLIRP) and the RISC 

complex (99,338,339). Recently, SRA was shown to function also as a 
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repressor of transcription, acting as a scaffold for a repressor complex 

(340). 

The growth arrest-specific 5 (Gas5), which is a multi-exon-containing 

ncRNA with a poly-A tail, is accumulated in cells whose growth is 

arrested due to lack of nutrients or growth factors (341). Gas5 functions as 

a repressor of the GRa and some other SRs (342). Gas5 sensitizes cells to 

apoptosis by suppressing glucocorticoid-mediated induction of several 

responsive genes, including those encoding the cellular inhibitor of 

apoptosis 2 and the serum/glucocorticoid-responsive kinase. Gas5 binds 

GRa DBD and acts as a decoy “GRE”, thus, it competes with DNA GREs 

for binding to GRa (Figure 16). These findings indicate that Gas5 is a ribo-

repressor of the GRa, influencing cell survival and metabolic activities 

during starvation by modulating the transcriptional activity of GRa. 

Accumulation of Gas5 upon growth arrest or starvation was previously 

demonstrated in a cellular context, but a study revealed that fasting of mice 

also accumulates Gas5 in their metabolic organs, such as liver and adipose 

tissues, through modulation of the mammalian target of rapamycin 

(mTOR) signaling pathway, but not in the brain and immune organs 

including thymus and spleen (343). Since basal expression levels of Gas5 

in the immune organs are much higher than those of the metabolic organs, 

Gas5 may have a regulatory activity on GRa in the immune system 

independent to the nutrient/energy availability, as evidenced by the fact 

that Gas5 is differentially expressed in blood leukocytes of the patients 

with autoimmune, inflammatory or infectious diseases (343). Moreover, 

Gas5 has been shown to be implicated in glucocorticoid response in 

children with inflammatory bowel disease (344), in multiple sclerosis 

(345-347), in human beta cell dysfunction (348), as well as in hematologic 

malignancies (349,350). Similar to Gas5, PRNCR1 (also known as 

PCAT8) and PCGEM1 bind AR DBD and enhance the transcriptional 

activity of this receptor (351). These lncRNAs are highly expressed in the 

prostate gland, and play a role in the androgen-dependent development of 

prostate cancer. Their effects on GRa have not been tested as yet. 
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Figure 16. 

Interaction model of the Gas5 RNA “GRE” to GR DBD and the molecular 

actions of Gas5 on GR-induced transcriptional activity. A: 3-Dimenstional 

structure of Gas5 “GRE”-mimic and its interaction model with GR DBD. 

From (342). B: Schematic model of Gas5 molecular actions on GR-

induced transcriptional activity. Gas5 accumulated in response to growth 

arrest/starvation binds GR DBD and attenuates GR-induced transcriptional 

activity by competing with DNA GREs located in the promoter region of 

glucocorticoid-responsive genes. 

Go to: 

THE SPLICING VARIANT GRbeta ISOFORM 

The GRb isoform, which is expressed from the human GR gene through 

alternative use of its specific exon 9b, is known to have a dominant 

negative activity on classic GRa-induced transcriptional activity (21,352). 

This isoform was originally identified in humans, and was also reported in 

zebrafish, mice and rats (19,353-355). Since human (h) GRb shares the 

first 727 amino acids from the N-terminus with hGRa (19,356) (Figure 3), 

hGRb shares the same NTD and DBD with hGRa, but has a unique 

“LBD”. The divergence point (amino acid 727) of hGRa and hGRb is 

located at the C-terminal end of helix 10 in the hGRa LBD, therefore the 

hGRb “LBD” does not have helices 11 and 12 of the hGRa. As these 

helices are important for forming the ligand-binding pocket and for the 

creation of the AF-2 surface upon ligand binding (31), GRb cannot form 

an active ligand-binding pocket, does not bind glucocorticoids, and so, 
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does not directly regulate GRE-containing, glucocorticoid-responsive gene 

promoters. In the absence of the hGRb “LBD”, the truncated hGR 

consisting of the NTD and DBD is transcriptionally active on GRE-

containing promoters (357), thus the hGRb “LBD” somehow attenuates 

the transcriptional activity of the other subdomains of the molecule on 

GRE-driven promoters. 

The dominant negative activity of GRb was first demonstrated in transient 

transfection-based reporter assays using GRE-driven reporter genes 

(21,358), but was subsequently confirmed on endogenous, glucocorticoid-

responsive genes, such as the mitogen-activated protein kinase 

phosphatase-1 (MPK-1), myocilin and fibronectin (359,360). Further, GRb 

was shown to attenuate glucocorticoid-induced repression of the TNFa and 

interleukin (IL)-6 genes (359). We also confirmed this negative effect of 

GRb on GRa-mediated transrepression using microarray analyses (361). 

Several mechanisms explaining this GRb function have been reported, 

including (1) competition for GRE binding through their shared DBD, (2) 

heterodimerization with GRa and (3) coactivator squelching through the 

preserved AF-1 domain (21,357,358). All these different mechanisms of 

actions appear to be functional, depending on the promoters and the tissues 

affected by this GR isoform. Recently, the human GRb was shown to 

possess intrinsic transcriptional activity independent to its dominant 

negative effect on GRa-induced transcriptional activity, while the 

physiologic role(s) of this activity remain(s) to be examined (342,361,362) 

(see below). Inside the cells, hGRb can localize both in the cytoplasm and 

in the nucleus (363,364). 

Similar to the human GR gene, the zebrafish (z) GR gene consists of 9 

exons and produces zGRa and zGRb proteins, which contain 746 and 737 

amino acids, respectively (353) (Figure 17). zGRa and zGRb share the N-

terminal 697 amino acids, whereas they have specific C-terminal portions, 

which contain 47 and 40 amino acids, respectively. In contrast to hGRa 

and hGRb, which are produced through alternative use of specific exon 9a 

and 9b, zGRa and zGRb are formed as a result of intron retention (353). 

zGRa and zGRb use exon 1 to exon 8 for their common N-terminal 697 

amino acids. zGRa uses exon 9 for its specific C-terminal portion, while 

zGRb continuously employs the rest of exon 8 and uses a stop codon 

located at the 3’ portion of this exon to express its specific C-terminal 

peptide (353). Protein alignment comparison of hGRb and zGRb indicated 

that these two molecules employ exactly the same divergence point, while 

their b isoform-specific C-terminal peptides show little sequence 
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homology (353). These pieces of molecular information indicate that 

hGRb and zGRb evolved independently. Mouse (m), and recently, rat (r) 

GRb are also shown to produce in the same fashion as zGRb, indicating 

that intron retention may be a general mechanism for expressing this 

receptor isoform in organisms, while splicing-mediated expression 

employed by hGRb is rather unique (355,365). Nevertheless, zebrafish, 

mouse and rat GRb demonstrated the same functional properties as those 

of hGRb, namely, inability to bind glucocorticoids, a dominant negative 

activity on respectively zGRa-, mGRa- and rGRa-induced transactivation 

of GREs-drive promoters, and a strikingly similar tissue distribution as 

hGRb (353,365). Thus, hGRb, mGRb, rGRb and zGRb were produced 

through convergent evolution, most likely developed through a strong 

requirement of this type of GR isoform in the survival of these species. 

Indeed, the presence of nonligand-binding C-terminal variants is not 

unique to the GR. Similar to the human, mouse, rat and zebrafish GR, 

several other human NRs, e.g. ERb, TRa, vitamin D receptor (VDR), 

constitutive androstane receptor (CAR), dosage-sensitive sex reversal-1 

(DAX-1), NURR-2, NOR-2, PPARα and PPARγ, all have C-terminally 

truncated receptor isoforms that are defective in binding to cognate ligands 

and have a dominant negative activity on their corresponding classic 

receptors (366-375). This suggests that evolution has allowed the 

development and retention of such alternative NRs, probably because they 

play important biologic roles. 

 

Figure 17. 
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Genomic and complementary DNA and protein structure of the zebrafish 

GR isoforms. The zebrafish (z) GR gene consists of 9 exons. The zGR 

gene expresses zGRa and zGRb splicing variants through intron retention 

(353). C-terminal gray colored and shaded domains in zGRa and zGRb 

show their specific portions. They are respectively encoded by exon 9 and 

the 3’ portion of exon 8, which are also shown in the same labeling in the 

genomic and complementary DNA models. Mouse and rat GR are 

produced with the same mechanism (355). Modified from (352). DBD: 

DNA-binding domain; LBD: Ligand-binding domain; NTD: N-terminal 

domain; UTR: untranslated region. 

Biological actions of GRb and associated molecular mechanisms have 

been examined further during the last years. Using adeno-associated virus-

based transfer of GRb to mouse liver, this isoform modulates mRNA 

expression of many genes in this organ including those related to 

endocrine system disorders, cancer, gastrointestinal diseases and immune 

diseases/inflammatory response both in a GRa-dependent and -

independent fashions (376). Specifically, GRb attenuates GRa-dependent 

expression of the hepatic PEPCK gene and hepatic gluconeogenesis, while 

GRb stimulates expression of STAT1 through GREs located in the 

intergenic area close to the latter gene. The latter finding suggests that 

GRb can regulate gene expression by binding to classic GREs, in contrast 

to the previous findings obtained with GRE-driven reporter genes. In 

addition, GRb antagonizes to GRa-mediated suppression of bladder cancer 

cell migration and myogenesis of cardiomyocytes (377,378). GRb 

suppresses PTEN expression and enhances insulin-stimulated growth by 

stimulating the phosphorylation of AKT1 in a GRa-independent fashion 

(379). Further, GRb acts as a coactivator of T-cell factor-4 and enhances 

glioma cell proliferation also in a GRa-independent manner (380). 

Several clinically oriented investigations suggest that GRb is responsible 

for the development of tissue-specific insensitivity to glucocorticoids in 

various disorders, most of them associated with dysregulation of immune 

function. They include glucocorticoid-resistant asthma, rheumatoid 

arthritis (RA), systemic lupus erythematosus (SLE), ankylosing 

spondylitis, chronic lymphocytic leukemia and nasal polyps (381-387). In 

these studies, various immune cells express elevated levels of GRb, which 

correlate with reduced sensitivity to glucocorticoids. Viral infection also 

stimulates GRb expression: for example, its expression in the peripheral 

mononuclear cells is strongly stimulated in the infants with bronchiolitis 

caused by the respiratory syncytial virus infection, and its expression 
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levels are correlated with severity of the disease (388). Elevated levels of 

pro-inflammatory cytokines, such as IL-1, -2, -4, -7, -8 and -18, TNFa, and 

interferons a and g, might be responsible for increased GRb expression in 

cells from patients with these pathologic conditions, as these cytokines 

experimentally stimulate the expression of GRb in lymphocytes, 

neutrophils or airway smooth muscle cells (389-394). Further, presence of 

a single nucleotide polymorphism in the 3’ UTR of the hGRb mRNA 

(rs6198G allele), which increases its stability, and thus, causes elevated 

expression of the GRb protein, was associated with increased incidence of 

RA, SLE, high blood pressure, ischemic heart disease and nasal carriage 

of Staphylococcus aureus (382,395-397), possibly through inhibition of 

glucocorticoid actions by the increased concentrations of GRb. These 

pieces of clinical evidence further support that GRb has a dominant 

negative activity on GRa-induced transcription inside the human body, 

functioning as a negative regulator of glucocorticoid actions in local 

tissues. 

Go to: 

PATHOLOGIC MODULATION OF GR ACTIVITY 

Natural Pathologic GR Gene Mutations that Cause 
Familial/Sporadic Generalized Glucocorticoid Resistance or 
Chrousos Syndrome 

Mutations in the human GR gene result in familial/sporadic generalized 

glucocorticoid resistance syndrome [see reviews (398-402)]. Since this 

syndrome was first reported by Chrousos et al. (403), we now call it as 

“Chrousos syndrome” (398,404). The condition is characterized by 

hypercortisolism without Cushingoid features (403,405). To overcome 

reduced sensitivity to glucocorticoids in tissues, affected subjects have 

compensatory elevations in circulating cortisol and ACTH concentrations, 

which maintain circadian rhythmicity and appropriate responsiveness to 

stressors, and resistance of the HPA axis to dexamethasone suppression, 

but no clinical evidence of hypercortisolism (404). Instead, the excess 

ACTH secretion causes increased production of adrenal steroids with 

mineralocorticoid activity, such as deoxycorticosterone (DOC) and 

corticosterone and/or androgenic activity, such as androstenedione, 

dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEA-S); The 

former accounts for symptoms and signs of mineralocorticoid excess, such 

as hypertension and hypokalemic alkalosis. The latter accounts for the 
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manifestations of androgen excess, such as ambiguous genitalia and 

precocious puberty in children, acne, hirsutism and infertility in both 

sexes, male-pattern hair-loss, menstrual irregularities and oligo-

anovulation in females, and adrenal rests in the testes and oligospermia in 

males. The clinical spectrum of the condition is broad and a large number 

of subjects may be asymptomatic, displaying biochemical alterations only 

(404). 

An increasing number of kindreds and sporadic cases with abnormalities 

in the GR number, affinity for glucocorticoid, stability, and translocation 

into the nucleus have been reported (406-414). The molecular defects that 

have been elucidated are presented in Figure 18 and Table 1. The 

propositus of the original kindred was a homozygote for a single 

nonconservative point mutation, replacing aspartic acid with valine at 

amino acid 641 in the LBD of GRa; this mutation reduces the binding 

affinity of the affected receptor for dexamethasone by three-fold and 

causes loss of transactivation activity (411). The proposita of the second 

family had a 4-base deletion at the 3’-boundary of exon 6, removing a 

donor splice site. This results in complete ablation of one of the GR alleles 

in affected members of the family (412). Recent research employing mice 

with GR haploinsufficiency confirmed that ablation of one GR allele is 

sufficient to develop generalized glucocorticoid resistance (415). The 

propositus of the third kindred had a single homozygotic point mutation at 

amino acid 729 (valine to isoleucine: V729I) in the LBD, which reduced 

both the affinity and the transactivation activity of GRa (414). Several 

pathologic heterozygotic or homozygotic mutations of the GR gene have 

been recently identified in the patients as listed in Table 1 (403,411-444). 
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Figure 18. 

Location of the known human GR mutations causing Chrousos syndrome 

or its mirror image, sporadic glucocorticoid hypersensitivity, in the 

human GR (NR3C1) gene (A) and in the linearized hGR protein molecule 

(B). Nucleoside numbers of the mutated sites are determined by the 

definition employing adenine of the translation initiation site as number 1. 

Table 1. 

Mutations in the NR3C1 Gene Causing Familial/Sporadic Generalized 

Glucocorticoid Resistance (Chrousos) or Hypersensitivity Syndromes 

Authors cDNA* Amino 

acid 

Molecular 

Defects 

Genotype Phenotype 

Chrousos et 

al. (403) 

1922A>T Asp641Val Transactivatio

n: Decreased 

Affinity to 

ligand: 

Homozygo

us 

Hypertension 

Hypokalemic 

alkalosis 
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Authors cDNA* Amino 

acid 

Molecular 

Defects 

Genotype Phenotype 

Hurley et al. 

(411) 

Decreased (x3) 

Nuclear 

translocation: 

22 min 

Abnormal 

interaction 

with GRIP1 

Karl et al. 

(412) 

4bp deletion in 

exon-intron 6 

 

GRa number: 

50% reduction 

Inactivation of 

affected allele 

Heterozygo

us 

Hirsutism 

Male-pattern 

hair-loss 

Menstrual 

irregularities 

Malchoff et 

al. (414) 

2185G>A Val729Ile Transactivatio

n: Decreased 

Affinity to 

ligand: 

Decreased (x4) 

Nuclear 

translocation: 

120 min 

Abnormal 

interaction 

with GRIP1 

Homozygo

us 

Precocious 

puberty 

Hyperandrogeni

sm 

Karl et al. 

(413) 

Kino et al. 

(416) 

1676T>A Ile559Asn Transactivatio

n: Decreased 

Transdominan

ce (+) 

Decrease in 

GR binding 

sites 

Nuclear 

translocation: 

180< min 

Abnormal 

Heterozygo

us 

Hypertension 

Oligospermia 

Infertility 
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Authors cDNA* Amino 

acid 

Molecular 

Defects 

Genotype Phenotype 

interaction 

with GRIP1 

Ruiz et al. 

(418) 

Charmandari

 et al. (419) 

1430G>A Arg477His Transactivatio

n: Decreased 

No GREs 

binding 

Decrease in 

GR binding 

sites 

Nuclear 

translocation: 

20 min 

Heterozygo

us 

Hirsutism 

Fatigue 

Hypertension 

Ruiz et al. 

(418) 

Charmandari

 et al. (419) 

2035G>A Gly679Ser Transactivatio

n: Decreased 

Affinity to 

ligand: 

Decreased (x2) 

Nuclear 

translocation: 

30 min 

Abnormal 

interaction 

with GRIP1 

Heterozygo

us 

Hirsutism 

Fatigue 

Hypertension 

Mendonca et 

al. (417) 

1712T>C Val571Ala Transactivatio

n: Decreased 

Affinity to 

ligand: 

Decreased (x6) 

Nuclear 

translocation: 

25 min 

Abnormal 

interaction 

with GRIP1 

Homozygo

us 

Ambiguous 

genitalia 

Hypertension 

Hypokalemia 

Oligo-

amenorrhea 
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Authors cDNA* Amino 

acid 

Molecular 

Defects 

Genotype Phenotype 

Vottero et al. 

(420) 

2241T>G Ile747Met

h 

Transactivatio

n: Decreased 

Transdominan

ce (+) 

Affinity to 

ligand: 

Decreased (x2) 

Nuclear 

translocation: 

Decreased 

Abnormal 

interaction 

with GRIP1 

Heterozygo

us 

Cystic acne 

Hirsutism 

Oligo-

amenorrhea 

Charmandari

 et al. (421) 

2318T>C Leu773Pro Transactivatio

n: Decreased 

Transdominan

ce (+) 

Affinity to 

ligand: 

Decreased 

(x2.6) 

Nuclear 

translocation: 

30 min 

Abnormal 

interaction 

with GRIP1 

Heterozygo

us 

Fatigue 

Anxiety 

Acne 

Hirsutism 

Hypertension 

Charmandari

 et al. (431) 

2209T>C Phe737Leu Transactivatio

n: Decreased 

Transdominan

ce (+) 

Affinity to 

ligand: 

Decreased 

(x1.5) 

Nuclear 

Heterozygo

us 

Hypertension 

Hypokalemia 
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Authors cDNA* Amino 

acid 

Molecular 

Defects 

Genotype Phenotype 

translocation: 

180 min 

Charmandari

 et al. (430) 

1201G>C Asp401His Transactivatio

n: Increased 

Transdominan

ce (-) 

Affinity to 

ligand: no 

change 

Nuclear 

translocation: 

Normal 

Heterozygo

us 

Hypertension 

Diabetes 

mellitus 

Accumulation of 

visceral fat 

McMahon et 

al. (426) 

2bp (TG) deletion 

at 2318 and 2319 

Phe774Ser

fs⃰ 

No 

transactivation 

activity 

No ligand-

binding 

activity 

Homozygo

us 

Severe 

hypoglycemia 

developed 1 day 

after birth 

Hypertension 

Fatigues with 

feeding 

Nader et al. 

(422) (443) 

2141G>A Arg714Gln Transactivatio

n: Decreased 

Transdominan

ce (+) 

Affinity to 

ligand: 

Decreased 

(x2.0) 

Nuclear 

translocation: 

20 min 

Abnormal 

interaction 

with GRIP1 

Heterozygo

us 

Heterozygo

us 

Hypoglycemia 

developed at age 

2 years and 10 

months 

Hypertension 

Accelerated 

bone age 

Mild 

clitoromegaly 

Infertility 
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Authors cDNA* Amino 

acid 

Molecular 

Defects 

Genotype Phenotype 

Bouligand et 

al. (429) 

1405C>T Arg469Ter Transactivatio

n: Decreased 

Affinity to 

ligand: 

Decreased 

Nuclear 

Translocation: 

No 

Heterozygo

us 

Bilateral adrenal 

hyperplasia 

Hypertension 

Hypokalemia 

Zhu et al. 

Nicolaides et 

al. (423) 

(424) 

1667C>T Threo556Il

e 

Transactivatio

n: Decreased 

Transdominan

ce: No 

Affinity to 

ligand: 

Decreased 

Nuclear 

translocation: 

50 min 

Heterozygo

us 

Bilateral adrenal 

hyperplasia 

Roberts et al. 

(428) 

1268T>C Val423Ala Transactivatio

n: Decreased 

Transdominan

ce: No 

Affinity to 

ligand: no 

change 

Nuclear 

translocation: 

2.6-fold delay 

Heterozygo

us 

Hypertension 

Nicolaides et 

al. (425) 

2177A>G His726Arg Transactivatio

n: Decreased 

Transdominan

ce: No 

Affinity to 

ligand: 

Decreased 

Heterozygo

us 

Hirsutism 

Acne 

Alopecia 

Fatigue 

Anxiety 
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Authors cDNA* Amino 

acid 

Molecular 

Defects 

Genotype Phenotype 

Nuclear 

translocation: 

60 min 

Irregular 

menstrual cycle 

Lin et al. 

(432) 

26C>G Pro9Arg Not performed Heterozygo

us 

Hypertension 

Paragliola et 

al. (433) 

367G˃T Glu123Ter Not performed Heterozygo

us 

Chronic fatigue 

Anxiety 

Hirsutism 

Irregular 

menstrual cycles 

Infertility 

Tatsi et al. 

(434) 

592G˃T Glu198Ter Not performed Compound 

heterozygo

us 

Hypertensive 

encephalopathy 

Al Argan et 

al. (435) 

1392delC Ile464Ilefs⃰ Not performed Heterozygo

us 

Low body 

weight 

Hyperandrogeni

sm 

Severe anxiety 

Adrenocortical 

hyperplasia 

Vitellius et 

al. (436) 

1429C˃A Arg477Ser Cytoplasm to 

nuclear 

translocation: 

Decreased 

DNA binding: 

(-) 

Dominant 

negative 

effect: (-) 

Heterozygo

us 

Obesity 
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Authors cDNA* Amino 

acid 

Molecular 

Defects 

Genotype Phenotype 

Transactivatio

n: (-) 

Velayos et 

al. (437) 

1429C˃T Arg477Cy

s 

Not performed Heterozygo

us 

Mild hirsutism 

Vitellius et 

al. (436) 

1433A˃G Tyr478Cys Cytoplasm to 

nuclear 

translocation: 

Decreased 

DNA binding: 

Weak and 

delayed 

Dominant 

negative 

effect: (-) 

Transactivatio

n: Decreased 

Heterozygo

us 

Adrenal mass 

Vitellius et 

al. (438) 

1471C˃T Arg491Ter Transactivatio

n: (-) 

Heterozygo

us 

Bilateral adrenal 

hyperplasia 

Vitellius et 

al. (438) 

1503G˃T Gln501His Transactivatio

n: Decreased 

Heterozygo

us 

Bilateral adrenal 

hyperplasia 

Ma et al. 

(439) 

1652C˃A Ser551Tyr Ligand 

binding: 

Decreased 

Cytoplasm to 

nuclear 

translocation: 

Decreased 

Transactivatio

n: Decreased 

Homozygo

us 

Fatigue 

Hypokalemia 

Hypertension 

Polyuria 
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Authors cDNA* Amino 

acid 

Molecular 

Defects 

Genotype Phenotype 

Velayos et 

al. (437) 

1762_1763insTT

AC 

His588Leu

fs⃰ 

Not performed Heterozygo

us 

Hirsutism 

Chronic fatigue 

Anxiety 

Cannavò et 

al. (440) 

1915C˃G Leu595Val Not performed Not 

available 

Hirsutism 

Amenorrhea 

Hypertension 

Trebble et al. 

(441) 

1835delC Ser612Tyrf

s ⃰

Protein 

expression: (-) 

Ligand 

binding: (-) 

Cytoplasm to 

nuclear 

translocation: 

(-) 

Dominant 

negative 

effect: Yes 

Transactivatio

n: (-) 

Heterozygo

us 

Fatigue 

Vitellius et 

al. (442) 

1980T˃G Tyr660Ter Transactivatio

n: (-) 

Heterozygo

us 

Hypertension 

Vitellius et 

al. (436) 

2015T˃C Leu672Pro Protein 

expression: 

Decreased 

Ligand 

binding: (-) 

Cytoplasm to 

nuclear 

translocation: 

(-) 

DNA binding: 

(-) 

Heterozygo

us 

Adrenal mass 
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Authors cDNA* Amino 

acid 

Molecular 

Defects 

Genotype Phenotype 

Dominant 

negative 

effect: No 

Transactivatio

n: (-) 

Donner et al. 

(444) 

2317_2318delCT Leu773Val

fs⃰ 

Protein 

expression: 

slightly 

reduced 

Transactivatio

n: Decreased 

Dominant 

negative 

effect: No 

Ligand 

binding: (-) 

Heterozygo

us 

Hypertension 

We examined the impact of 10 pathologic GRa point mutations (559N, 

V571A, V575G, D641V, G679S, R714Q, V729I, F737L, I747M and 

L773P) to the molecular structure of the GRa LBD focusing on its ligand-

binding pocket and AF-2 surface by using computer-based molecular 

simulation, and found some rules on the molecular disruption of these 

structural units by the mutations (89); (1) Topology of the peptide 

backbones is highly preserved in pathologic GRa mutant LBDs (Figure 

19A). This result suggests that alteration in property and/or positioning of 

the side chain of replaced amino acids is rather crucial for developing 

molecular defects. (2) Defects in the ligand-binding pocket of the mutant 

receptors are driven primarily by loss/reduction (indirectly through 

structural changes in LBD induced by the mutations) of the electrostatic 

interaction formed by arginine 611 and threonine 739 of the receptor to 

glucocorticoid and a subsequent conformational mismatch (Figure 19B). 

(3) Defects of the AF-2 surface that reduce affinity to the LxxLL motif are 

caused mainly (also indirectly) by disruption of the electrostatic bonds to 

the non-core leucine residues of this peptide that determine the peptide’s 

specificity to GRa LBD (Figure 19C), as well as by reduced non-covalent 
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interaction against core leucines and subsequent exposure of the AF-2 

surface to solvent. 



 



Figure 19. 

Impact of pathologic GR point mutations to the molecular structure of GR 

LBD. A: Distribution of the pathologic GR point mutations in its LBD and 

their overall impact on the 3-dimensional LBD peptide backbone. 

Thickness and color of the overlaid C-traces of the GR mutant receptor 

LBDs and the wild type GR LBD indicate the areas of least (thin and blue) 

to most (thick and red) motion over the course of simulation. Locations 

and side chains of the mutated amino acids are indicated, whereas 

dexamethasone (shown with the white and red spheres of space-filling 

model) is located inside LBP. B: Alteration of the electrostatic bond 

formed by arginine (R) 611 and threonine (T) 739 of pathologic GR 

mutants to dexamethasone may largely explain the reduced affinity of 

many pathologic GR mutants to this steroid. The left panel demonstrates 

superimposed 3-dimensional interaction images of dexamethasone and the 

key residues of all pathologic GRa mutants. Among the key amino acids of 

pathologic mutants participating in interaction with dexamethasone, R611 

is largely deviated in these mutant receptors, which underlies 

reduced/disappeared electrostatic interaction between this residue and the 

carbonyl oxygen at carbon-3 of dexamethasone. Q570 and N564 are 

omitted from these panels. Major changes observed in the electrostatic 

bond formed by R611 and T739 are indicated with a purple dotted circle. 

The right panel shows schematic molecular interaction between wild type 

GRa and dexamethasone. Purple and orange arrows indicate electrostatic 

and non-covalent bonds, respectively. DEX: dexamethasone. C: Defective 

non-covalent bonds formed between Q597, D590, K579 and R585 of the 

pathologic GRa mutants and N742, R746, D750 and D752 of the LxxLL 

peptide mainly explain reduced interaction of the mutant receptor AF-2s to 

this peptide. The panel demonstrates 3-dimensional image of the 

molecular interaction between the LXXLL peptide and key residues of the 

wild type GRa. The LxxLL peptide forms important electrostatic bonds 

with its non-core leucine residues (N742, R746, D750 and D752) against 

the receptor residues (Q597, D590, R585 and K579, respectively) as 

marked with purple dotted boxes. Pathologic GRa mutants demonstrate 

significant shift of the side chains of some of these receptor residues 

among which the side chain of R585 shows the most significant deviation 

(shown in square inserts). Modified from (89). 

GR Gene Mutation-Mediated Hypersensitivity Syndrome 
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Only one mutation has been reported in the GRa NTD that replaces 

aspartic acid at amino acid 401 by histidine (D401H) (G to C replacement 

at nucleotide position 1201) (430). The patient harboring this heterozygous 

mutation presented with manifestations consistent with glucocorticoid 

hypersensitivity, in accordance with the in vitro results showing that the 

mutant receptor hGRaD401H demonstrated a 2.4-fold increase in its 

ability to transactivate the glucocorticoid-responsive promoters. This 

condition represents the mirror image of the Chrousos syndrome. 

Although not in humans, one porcine heterozygotic substitution that 

replaces alanine at amino acid 610 with valine (A610V) in LBD of the 

porcine GR causes a gain-of-function phenotype, shifting the titration 

curve of GR-transcriptional activity to leftward (this suggests increase of 

the receptor affinity to glucocorticoid) (445). 

GR Gene Polymorphisms 

Polymorphisms of the human GR gene have also been reported (446). A 

heterozygous polymorphism replacing aspartic acid to serine at amino acid 

363 (N363S) that mildly increases transcriptional activity of the affected 

receptor in vitro is associated with increased sensitivity to glucocorticoids, 

weakly correlating with the development of central obesity, and thus, 

influencing the metabolic profile and the longevity of humans in a 

negative fashion (447-449). This polymorphism found at amino acid 363 

was first described by Karl et al. (412). 

The polymorphism in the human GR gene that causes arginine to lysine 

replacement at amino acid 23 (ER22/23EK: GAG AGG to GAA AAG) is 

associated with relative glucocorticoid resistance by altering the 

expression levels of GRa translational isoforms (450). This polymorphism 

increases muscle mass in males and reduces waist to hip ratio in females, 

and is associated with greater insulin sensitivity, and lower total and low-

density lipoprotein cholesterol levels, indicating that this polymorphism 

causes beneficial effects on longevity by reducing glucocorticoid actions 

(451,452). 

One recent study examined influence of N363S and ER22/23EK 

polymorphisms to intelligence quotient (IQ) and behavior of 344 young 

subjects who have been followed up from their birth (453). The study 

found that N363S is not associated with IQ, while ER22/23EK showed 

significantly higher IQ scores. Both polymorphisms did not show any 

effects on the behavior scores. Antenatal glucocorticoid treatment reduces 

IQ scores in the subjects carrying N363S or ER22/23EK polymorphism. 
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The BclI GR polymorphism comprises a C to G nucleotide substitution at 

646 bp downstream of exon 2 in intron B of the human GR gene that 

creates a cutting site for the BclI restriction enzyme. G-allele of this 

polymorphism increases tissue sensitivity to glucocorticoids as shown by 

greater suppression of serum cortisol levels after dexamethasone 

administration (454). This polymorphism is associated with development 

of mood disorders, psychopathology, bronchial asthma, hypertension, 

hyperinsulinism and obesity (455,456). It is also associated with increased 

bone resorption in patients receiving glucocorticoid replacement therapy 

(457). Although a large study employing adolescents (15-17 years old) did 

not confirm the association of the BclI polymorphisms to changes in 

several stress-related neurological parameters (458), a study employing 

460 subjects with post-traumatic stress disorder (PTSD) found that this 

polymorphism and another polymorphism rs258747, located in the 3’-

flanking region of the human GR gene and potentially influencing stability 

of GR mRNA, significantly increase a risk for developing PTSD (459). In 

one study, the BclI GR polymorphism was associated with lower 

frequency of insulin resistance in the women with polycystic ovary 

syndrome (PCOS) in contrast to the findings obtained in normal subjects 

(460). 

A single nucleotide polymorphism that replaces A with G at the nucleoside 

3669 (A3669G) located in the 3’ end of exon 9b has been described in a 

European population (461). This polymorphism does not change the amino 

acid sequence but increases the stability of GRb mRNA and increases GRb 

protein expression, leading to greater inhibition of GRa-induced 

transcriptional activity and causing glucocorticoid resistance in tissues. 

The presence of the A3669G allele is associated with reduced central 

obesity and a more favorable lipid profile in affected subjects (461). 

Viral Infection 

HUMAN IMMUNODEFICIENCY VIRUS TYPE-1 

Patients with the Acquired Immunodeficiency Syndrome (AIDS), which is 

caused by infection of the Human Immunodeficiency Virus type-1 (HIV-

1), have several manifestations compatible with increased activity of GRa. 

They develop reduction of innate and Th1-directed cellular immunity, 

which is also seen in the conditions of glucocorticoid excess. Patients with 

AIDS often develop symptoms and signs that manifest in 

hypercortisolemic states, such as muscle wasting, myopathy, dyslipidemia 
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and visceral obesity-related insulin resistance (462-466). Therefore, it is 

possible that some HIV-1-related factor(s) may modulate the function of 

GRa in patients with AIDS. Please see for more details the chapter on 

AIDS and the HPA Axis in the Adrenal Section of Endotext. 

We have shown that one of the HIV-1 accessory proteins, Vpr, a 96-amino 

acid virion-associated protein with multiple functions (467,468), enhances 

GRa transactivation by functioning as a coactivator (469) (Figure 20). 

Indeed, Vpr contains a NR coactivator motif LxxLL at amino acids 64-68. 

This motif is used by host NR coactivators to bind NRs (80) (see 

Section ln ACTIONS OF GR, Mechanism of GRa-mediated Activation of 

Transcription). Similarly, through this motif, Vpr directly binds GRa and 

cooperatively enhances its activity on its responsive promoters along with 

host NR coactivators SRC-1 (p160-type protein, NCoA1) and p300/CBP 

(469). Vpr directly binds p300 at its C-terminal amino acids 2045-2191, 

where the p160 coactivators (NCoAs) also bind (470). Since Vpr circulates 

at detectable levels in HIV-1-infected individuals and is able to penetrate 

the cell membrane, its effects may be extended to cells not infected by 

HIV-1 (471,472). Indeed, extracellularly administered Vpr polypeptide 

regulates glucocorticoid-responsive genes, such as IL-12 p40, in the same 

way as the potent glucocorticoid, dexamethasone (473). In addition to 

regulating GRa activity, Vpr modulates the transcriptional activity of 

PPARb/d and PPARg, the NR family proteins important for fatty acid 

metabolism (474,475). Through modulating activities of GRa and the 

PPARs, Vpr appears to participate in the development of the characteristic 

AIDS-related lipodystrophy syndrome, which is quite prevalent among 

AIDS patients (476,477). 
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Figure 20. 

Linearized Vpr, Tat, E1A, p300 and CtBP1 molecules and their mutual 

interaction domains. Vpr interacts with GR and several other NRs through 

its LxxLL motif located at amino acids 64 to 69. Binding sites of Vpr and 

p160-type HAT coactivators overlap with each other on p300. Since Vpr 

has a LxxLL motif similar to p160 coactivators, Vpr mimics host p160 

coactivators and enhances GR transcriptional activity. Tat also binds both 

p300 and p160 coactivators. p300 facilitates attraction of many 

transcription factors, cofactors and general transcription complexes, and 

loosens the histone/DNA interaction through acetylation of the histone 

tails by its histone acetyltransferase (HAT) domain. E1A binds p300 at the 

latter’s C-terminal portion, while it physically interacts with the N-

terminal portion of CtBP1 through its C-terminal end. The N-terminal 

portion of CtBP1 physically interacts with HDAC5 and Retinoblastoma 

protein (Rb), which have repressive activity on transcription. CtBP1 

regulates its interaction to binding partners by sensing cellular NAD+ 

levels through its NAD+-binding domain. The HAT domain of p300 and 

the NAD+-binding domain of CtBP1 are indicated in grey. Modified from 

(478). CREB: CRE-binding protein, HAT: histone acetyltransferase, 

HDAC5: histone deacetylases 5, NF-B: nuclear factor-B, NAD: 

nicotinamide adenine dinucleotide, NR: nuclear hormone receptor, p/CAF: 

p300/CBP-associating factor, pTEFb: positive-acting transcription 
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elongation factor b, Rb: retinoblastoma protein, SF-1: steroidogenic factor-

1, STAT2: signal transducer and activator of transcription 2, TFIIB: 

transcription factor IIB. 

Another HIV-1 accessory protein, Tat, which functions as a major 

transactivator of the HIV-1 long terminal repeat promoter (479) also 

potentiates GRa activity moderately by increasing accumulation of the 

positive transcription elongation factor b (pTEFb) (480-482) (Figure 20). 

Like Vpr, Tat readily penetrates the cell membranes (483) and may, 

therefore, modulate the transcriptional activity of GRa in the cells/tissues 

not infected by HIV-1. 

Through Vpr and Tat, HIV-1 may facilitate the transcription of genes 

encoding its own proteins by directly stimulating viral proliferation. On 

the other hand, by enhancing transactivation of GRa and other NRs, these 

proteins may contribute to the viral proliferation possibly by suppressing 

the host immune system, while they participate in the development of 

several pathologic conditions associated with HIV-1 infection (480,484). 

ADENOVIRUS 

Adenoviruses cause illness of the respiratory system, such as common cold 

syndrome, pneumonia, croup and bronchitis, as well as illnesses of other 

organs, such as gastroenteritis, conjunctivitis and cystitis. They encode the 

E1A protein, which is expressed just after the infection and is necessary 

for the transcriptional regulation of the adenovirus-encoded genes (485). 

In addition to the viral genes, E1A regulates the transcriptional activity of 

a variety of host genes through interaction with the host transcriptional 

integrator p300 and its homologous molecule CBP (77,486) (Figure 20). In 

an in vitro system, E1A, in contrast to Vpr, blocks the actions of 

glucocorticoids on the transcriptional activity of genes, producing 

resistance to glucocorticoids (470). 

E1A also interacts with the C-terminal tail-binding protein 1 (CtBP1), 

which functions as a transcriptional repressor for numerous transcription 

factors, by communicating with the class II HDACs and other inhibitory 

molecules like the retinoblastoma protein (Rb) (487) (Figure 20). E1A 

suppresses functions of p300/CBP and CtBP1 by binding to their 

functionally critical domains (77,487). Although there is no supportive 

clinical evidence, it is highly possible that adenovirus changes the 

peripheral action of glucocorticoids as well as of other bioactive molecules 

that activate NRs and directly regulates the transcriptional activity of their 
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target genes, ultimately contributing to the pathologic states observed in 

adenoviral infection. 

OTHER VIRUSES 

We examined the impact of viral infection (murine cytomegalovirus: 

mCMV) on glucocorticoid-mediated modulation of gene expression in 

dendritic cells (488). Among 96 genes examined, the viral infection 

significantly enhanced dexamethasone-induced IL-10 expression. 

Activation of the toll-like receptors (TLRs) by the virus stimulates the 

extracellular signal-regulated kinase (ERK) 1/2, which in turn increases 

phosphorylation of the human GRa at serine 203, resulting in the 

enhancement of GRa transcriptional activity on the IL-10 gene promoter. 

Since IL-10 is a potent anti-inflammatory cytokine, it appears that the 

virus stimulates its own infection/propagation by enhancing GRa activity 

on this cytokine. Respiratory syncytial virus (RSV), which is one of the 

major causes of lower respiratory tract infection and hospital visits during 

infancy and childhood, is reported to repress the anti-inflammatory action 

of glucocorticoids through GRa (489-491). 
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